Oxidative Cyclization of $\delta, \epsilon-$ and ϵ, ζ-Unsaturated Enol Silyl Ethers and Unsaturated Siloxycyclopropanes

Barry B. Snider* and Taesoo Kwon
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received December 12, 1991

Abstract

Oxidative cyclization of δ, ϵ - and ϵ, ζ-unsaturated enol silyl ethers $\mathbf{4 a}$ and $\mathbf{4 b}$ with cupric triflate and cuprous oxide or ceric ammonium nitrate and sodium bicarbonate in acetonitrile provides the tricyclic ketones 5 a and $\mathbf{5 b}$ stereoselectively. These cyclizations proceed by oxidation of $\mathbf{4}$ to the cation radical 24 followed by cyclization of 24 to cation radical 27. This cation radical undergoes a second cyclization to give cation radical 30, which loses the silyl group, undergoes a second oxidation, and loses a proton to give 5 . The stereochemistry of the cycloadduct is controlled by the stereochemistry of the enol ether. The Z-enol methyl ether (Z) 65 leads mainly to 5 a while the E-enol methyl ether $(E)-65$ leads mainly to 6 . The oxidative cyclizations of $7,13,21$, and 43 are also described. Oxidation of α-allyl silyl enol ethers 34a and 34b leads mainly to oxidation without cyclization to give the α, β-unsaturated ketones $\mathbf{3 6 a}$ and 36 b . Oxidative cyclizations of alkynyl silyl enol ethers 56 and 60 lead to 15 and 64, respectively. Oxidation of siloxycyclopropane 74 with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ generates cation radical 75, which cyclizes to 76, which is oxidized to give 21% of cyclopentane 77 . This suggests that cation radicals are intermediates in the oxidative dimerization of siloxycyclopropanes.

Introduction

We recently reported oxidative free-radical cyclizations that are initiated by oxidation of β-dicarbonyl compounds with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. ${ }^{1}$ The scope of these reactions would be extended if they could be initiated by oxidation of a monocarbonyl compound. Unfortunately, oxidative cyclizations of ϵ, ζ-unsaturated ketones will probably not be practical, since intermolecular oxidative additions of ketones to alkenes are successful ${ }^{2}$ only when a large excess of ketone is used to preclude further oxidation of the product. Oxidative cyclization of δ, ϵ - and ϵ, ζ-unsaturated enolates or enol ethers did appear to be viable since the oxidative coupling of enolates or enol ethers with copper(II) ${ }^{3-5}$ cerium(IV), ${ }^{6,7} \mathrm{Fe}$ (III), ${ }^{8 \mathrm{a}} \mathrm{Pb}(\mathrm{IV}),{ }^{8 \mathrm{~b}}$ or $\mathrm{Ag}(\mathrm{I})^{9}$ can
(1) (a) Snider, B. B.; Mohan, R. M.; Kates, S. A. J. Org. Chem. 1985, 50, 3659. (b) Snider, B. B.; Mohan, R. M.; Kates, S. A. Tetrahedron Lett. 1987, 28, 841. (c) Mohan, R. M.; Kates, S. A.; Dombroski, M. A.; Snider, B. B. Ibid. 1987, 28, 845. (d) Snider, B. B.; Patricia, J. J.; Kates, S. A. J. Org. Chem. 1988, 53, 2137. (e) Snider, B. B.; Dombroski, M. A. J. Org. Chem. 1987, 52, 5487. (f) Snider, B. B.; Patricia, J. J. J. Org. Chem. 1989, 54, 38. (g) Merrit, J. E.; Sasson, M.; Kates, S. A.; Snider, B. B. Tetrahedron Lett. 1988, 29, 5209. (i) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427. (j) Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1990, 112, 2759. (k) Snider, B. B.; Wan, B. Y.; Buckman, B. O.; Foxman, B. M. J. Org. Chem. 1991, 56,328 . (l) Curran, D. P.; Morgan, T. M.; Schwartz, E.; Snider, B. B.; Dombroski, M. A. J. Am. Chem. Soc. 1991, 113, 6607.
(2) (a) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524. (b) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1972, 94, 2888. (c) Lallemand, J. Y. Tetrahedron Lett. 1975, 1217.
(3) For leading references, see: (a) Baudin, J.-B.; Julia, M.; Rolando, C.; Verpeaux, J.-N. Bull. Chim. Soc. Fr. 1987, 493. (b) Babler, J. H.; Sarussi, S. J. J. Org. Chem. 1987, 52, 3462. (c) Belletire, J. L.; Fry, D. F. J. Org. Chem. 1987, 52, 2549. (d) Kawabata, T.; Sumi, K.; Hiyama, T. J. Am. Chem. Soc. 1989, 111, 6843. (d) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1977, 99, 1487.
(4) (a) Kobayashi, Y.; Taguchi, T.; Morikawa, T.; Tokuno, E.; Sekiguchi, S. Chem. Pharm. Bull. 1980, 28, 262 . (b) Kobayashi, Y.; Taguchi, T.; Tokuno, E. Tetrahedron Lett. 1977, 3741.
(5) For reviews of Cu(II) oxidation, see: (a) Kochi, J. K. Science 1967, 155, 415. (b) Nonhebel, D. C.; in Essays on Free-Radical Chemistry; Norman, R. O. C., Ed.; Special Publication 24; The Chemical Society: London, 1970, pp 409-437. (c) Kochi, J. K. Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. 1, Chapter 11. (d) Nigh, W. G. In Oxidation in Organic Chemistry, Part B; Trahanovsky, W. S., Ed.; Academic Press: New York, 1973; pp 1-86. (e) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 843.
(6) Baciocchi, E.; Casu, A.; Ruzziconi, R. Tetrahedron Lett. 1989, 30, 3707.
(7) Richardson, W. H. In Oxidation in Organic Chemistry, Part A; Wiberg, K. B., Ed.; Academic Press: New York, 1965; pp 244-277. Ho, T. L. In Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J., deJonge, C. R. H. I., Ed.; Plenum Press: New York, 1986; Chapter 11.
(8) (a) Frazier, R. H., Jr.; Harlow, R. L. J. Org. Chem. 1980, 45, 5408. (b) Moriarty, R. M.; Penmasta, R.; Prakash, I. Tetrahedron Lett. 1987, (b) Morial
$28,873$.
be carried out without further oxidation of the product diketones. We expected that conditions could be developed in which either an enol radical or a cation radical, prepared by the oxidation of an enol ether, would add intramolecularly to an alkene more rapidly than it would add intermolecularly to a second enol ether.

We report here that oxidative cyclizations of $\delta, \epsilon-$ and ϵ, ζ-unsaturated enol silyl ethers can be carried out with either copper(II) or cerium(IV). ${ }^{10}$ Moeller has recently shown that similar cyclizations can be carried out by anodic oxidation. ${ }^{11}$ Both of these oxidative cyclizations are mechanistically distinct from the palladium(II)-mediated cyclizations of unsaturated enol silyl ethers studied by Saegusa ${ }^{12}$ and Kende ${ }^{13}$ that appear to proceed by addition of the nucleophilic silyl enol ether to the electrophilic palladium-alkene complex.

Results and Discussion

Oxidative Cyclization of Silyl Enol Ethers of Unsaturated Aromatic Ketones. We chose phenyl ketone la for initial studies since only one regioisomeric enolate or enol ether can be formed and the phenyl group might act as a trap for the monocyclic intermediate formed from the initial cyclization. The chain length was chosen since the cyclization of 5 -hexenyl radicals to give cyclopentanemethyl radicals is faster than the formation of smaller or larger rings. Treatment of (Z) - 6 -nonenal with PhMgBr followed by Jones' oxidation of the resulting alcohol gives 1a. Reaction of lithium enolate 2a in THF at $-78{ }^{\circ} \mathrm{C}$ with a solution of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Cu}_{2} \mathrm{O}$ in i - PrCN as described by Kobayashi ${ }^{4}$ for the oxidative dimerization of enolates gives only the dimeric 1,4 -diketone. Not surprisingly, intramolecular coupling of the enol radical with

[^0]the alkene cannot compete with intermolecular coupling with the very reactive enolate. We therefore turned our attention to oxidative cyclization of unsaturated enol ethers.

Our initial success was achieved in the oxidative cyclization of trimethylsilyl enol ether 3a, which gives 10% of a $20: 1$ mixture of $5 \mathbf{a}$ and $\mathbf{6 a}$. The major product is ketone 1a, which indicates that trimethylsilyl enol ethers are not stable to the reaction conditions. We therefore turned our attention to more hydrolytically stable silyl enol ethers. Treatment of ketone la with $\mathrm{Et}_{3} \mathrm{~N}$ and tert-butyldimethylsilyl triflate (TBDMSOTf) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives 90% of a $5: 1$ mixture of (Z)-4a and (E)-4a. ${ }^{14}$ Alternatively, treatment of lithium enolate 2a with TBDMSOTf affords 88% of pure (Z)-4a. ${ }^{15,16}$ The stereochemistry of the enol ether double bond was assigned based on chemical shifts in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The vinyl hydrogen ($\mathrm{OC}=\mathrm{CH}$) absorbs downfield ($\delta 5.11$ vs 5.08), $\mathrm{C}_{2}(C=\mathrm{CO})$ absorbs downfield ($\delta 111.7 \mathrm{vs} 111.1$), and the silylmethyl carbons absorb upfield ($\delta-4.0$ vs +0.5) in the Z-isomer. ${ }^{16}$
Reaction of $(Z)-4 a$ with excess $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$ at $0^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$, as described by Kobayashi for the oxidative dimerization of trimethylsilyl enol ethers, ${ }^{4}$ affords 90% of a $20: 1$ mixture of tricyclic ketones 5 a and $\mathbf{6 a}$. Similarly, reaction of $\mathbf{4 a}$ with 2 equiv of ceric ammonium nitrate (CAN) and excess NaHCO_{3} at rt in $\mathrm{CH}_{3} \mathrm{CN}$, as described by Baciocchi ${ }^{6}$ for the oxidative dimerization of trimethyl silyl enol ethers, provides 88% of a $20: 1$ mixture of 5 a and 6 a . Oxidation of 4 a with 2 equiv of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ and excess of $\mathrm{Cu}_{2} \mathrm{O}$ at rt in $\mathrm{CH}_{3} \mathrm{CN}$ gives 62% of a $20: 1$ mixture of $5 \mathbf{a}$ and $\mathbf{6 a}$. Other oxidants are less successful in carrying out these transformations. Oxidation of $(Z)-7$ (vide infra) with 2 equiv of tris(p-bromophenyl)aminium hexachloroantimonate ${ }^{17}$ and excess $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gives 41% of a $2.5: 1$ mixture of 8 and 9 . This procedure is of mechanistic interest since it is known to be an effective way of generating cation radicals. However, it is of limited synthetic interest since 2 equiv of the aminium cation are consumed and purification of the product is difficult. No tricyclic products are obtained from treatment of $(Z)-4$ a with

[^1]

5

6

Figure 1. Calculated conformations of 5 and 6.
$\mathrm{TiCl}_{4},{ }^{18} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3},{ }^{19} \mathrm{Mn}(\mathrm{OAc})_{3}$, or PhIO and $\mathrm{HBF}_{4} \cdot{ }^{20}$
The stereochemistry of the major isomer 5 a was assigned based on the coupling constants $J_{\mathrm{Hb}, \mathrm{Hc}}=10.7 \mathrm{~Hz}$ and $J_{\mathrm{Ha}, \mathrm{Hb}}$ $=13.3 \mathrm{~Hz}$, which require that $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and H_{c} are all axial (see Figure 1). Equilibration of 5 a with KOH in MeOH gives a 7.7:1 mixture of 6 a and 5 a , thereby establishing the stereochemistry of the minor product 6 a as shown. The equilibrium mixture corresponds closely to that predicted by MM2 calculations, ${ }^{21}$ which suggest that 6a is more stable than 5 a by $1.3 \mathrm{kcal} / \mathrm{mol}$ and is similar to the $2: 1$ cis-trans equilibrium mixture observed in the parent system lacking the ethyl group. ${ }^{22}$

The trans-fused isomer 5 a is locked in a rigid conformation. The only question is the conformation of the ethyl group. MM2 calculations suggest that the methyl group is antiperiplanar to the ring hydrogen H_{c} to avoid interactions with the outside rings. In this conformation the calculated coupling constants between H_{c} and the CH_{2} group are 4.3 and 2.6 Hz . This prediction is confirmed by the unusually small coupling of 3.8 Hz observed between H_{c} and the CH_{2} group, and the absorption of methyl group of 5a upfield at $\delta 8.1$ in the ${ }^{13} \mathrm{C}$ NMR spectra due to two gauche butane interactions. The methyl group of $6 \mathbf{a}$, which has only one gauche butane interaction, absorbs at $\delta 12.3$.

The cis-fused isomer $6 a$ is calculated to be more stable in the conformation with an axial ethyl group to avoid steric interactions between the ethyl group and outside rings. The observed smaller couplings $J_{\mathrm{Hb}, \mathrm{Hc}}=8 \mathrm{~Hz}$ and $J_{\mathrm{Ha}, \mathrm{Hb}}=7 \mathrm{~Hz}$ are expected for the cis conformer since there are no axial-axial couplings.

Oxidative cyclization of $\mathbf{4 b}$ was examined to determine the suitability of this approach for forming cyclohexanes. Phenyl ketone 1b was prepared analogously from (Z)-7decenal. Reaction of enolate $\mathbf{2 b}$ with TBDMSOTf affords silyl enol ether (Z)-4b. Oxidative cyclization of $(Z)-\mathbf{4 b}$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$ as described above affords 87% of a $20: 1$ mixture of tricyclic ketones $\mathbf{5 b}$ and $\mathbf{6 b}$. Oxidation of $(Z)-\mathbf{4 b}$ with CAN is less successful, providing a complex mixture containing 42% of a $4.3: 1$ mixture of $\mathbf{5 b}$ and $\mathbf{6 b}$, and 3% of the α-nitrooxy unsaturated acyclic ketone.

The stereochemistry of $\mathbf{5 b}$ was assigned based on $J_{\mathrm{Hb}, \mathrm{Hc}}$ $=10.4 \mathrm{~Hz}$ indicating that H_{b} and H_{c} are axial. $J_{\mathrm{Ha}, \mathrm{Hb}}$ cannot be determined since the ring fusion hydrogens absorb as part of a three hydrogen multiplet. Equilibration of $\mathbf{5 b}$ with KOH in MeOH provides a 1:2.5 mixture of $\mathbf{5 b}$

[^2]and 6b. MM2 calculations ${ }^{21}$ suggest that the cis-fused isomer 6 b should be more stable than the trans-fused isomer 5 b by $1.3 \mathrm{kcal} / \mathrm{mol}$. As discussed above, the methyl group of $5 \mathbf{b}$ is calculated to be antiperiplanar to $\mathrm{H}_{\mathrm{c}} \cdot$ resulting in the observed small coupling constants between H_{10} and the adjacent methylene group of 3.6 Hz and the upfield shift of the methyl carbon to $\delta 7.60$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. Isomer $6 \mathbf{b}$ is calculated to be more stable in the configuration with an axial ethyl group to avoid steric interactions between the ethyl group and the outside rings.

Silyl enol ether 7 was examined to determine the effect of a methyl substituent on the stereochemistry of the products. The ketone precursor was prepared by addition of PhMgBr to citronellal followed by oxidation of the alcohol with Jones' reagent. Treatment of the ketone with TBDMSOTf ${ }^{15}$ gives an 8:1 mixture of $(Z)-7$ and $(E)-7$. Oxidative cyclization of $(Z)-7$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$ gives 90% of a $3.2: 1$ mixture of tricyclic ketones 8 and 9 in 90% yield and while CAN affords 73% of a $3: 1$ mixture of 8 and 9 .

The stereochemical assignment of 8 and 9 follows from the coupling constants and absence of significant epimerization on treatment of either isomer with KOH in MeOH . Large coupling constants $J_{\mathrm{H} 3 \mathrm{a}, \mathrm{H9a}}=13.6 \mathrm{~Hz}$ and $J_{\mathrm{H} 3, \mathrm{H} 3 \mathrm{a}}=8.7 \mathrm{~Hz}$ for 8 indicate that the ring fusion is trans. These coupling constants are close to the coupling constants of 12.6 and 10.6 Hz calculated by MM2 for 8 . Equilibration of 8 with KOH in MeOH affords a $>9: 1$ mixture of 8 and 10 , which is consistent with MM2 calculations that 8 is $0.7 \mathrm{kcal} / \mathrm{mol}$ more stable than 10 . The stereochemistry of 9 was assigned on the basis of $J_{\mathrm{Hza,H9a}}$ $=8.2 \mathrm{~Hz}$ and $J_{\mathrm{H} 3, \mathrm{H} 3 \mathrm{a}}=5.5 \mathrm{~Hz}$, which indicate that the ring fusion is cis. These coupling constants are close to the 7.8 and 5.2 Hz values calculated for 9 . Equilibration of 9 with KOH in MeOH gives no 11, which is consistent with MM2 calculations that 11 is $2.76 \mathrm{kcal} / \mathrm{mol}$ less stable than 9.

More complex mixtures are obtained from oxidation of substrates with terminal double bonds. Ketone 12 was prepared by treatment of 6 -heptenonitrile with $\mathrm{PhMgBr}{ }^{23}$ Reaction of 12 with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives an 8:1 mixture of $(Z)-13$ and (E)-13. Oxidative cyclization of $(Z)-13$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$ gives 5% of ketone $12,9 \%$ of $16,{ }^{24}$ 2% of $14,,^{24}$ and 7% of tricyclic ketone $19 .{ }^{25}$ Oxidation of (Z)-13 with CAN affords 1% of ketone $12,29 \%$ of $16,{ }^{24}$ 1% of $15,{ }^{26} 2 \%$ of tricyclic ketone $19,{ }^{25} 16 \%$ of cis-nitrooxy ketone 17 , and 30% of trans-nitrooxy ketone 18 . Oxidative cyclization of (Z)-13 proceeds efficiently, especially with CAN. However, complex mixtures of products 14-18 are

[^3]obtained since cyclization of the monocyclic intermediate to give 19 is slow.

Oxidative Cyclization of Silyl Enol Ethers of Unsaturated Aliphatic Ketones. The phenyl group clearly plays a key role in the cyclization of 4 and 7 . The monocyclic intermediates resulting from 5-exo or 6-exo cyclization cyclize to the benzene ring to give tricyclic products in excellent yield. Complex mixtures of products are obtained from 13 in which the phenyl group is not well-positioned to react with the intermediate resulting from 6 -endo cyclization. The phenyl group could also play a crucial role in reducing the oxidation potential of the silyl enol ether. We therefore set out to examine the oxidative cyclization of silyl enol ethers derived from aliphatic ketones. tert-Butyl ketones were chosen for initial study to preclude the formation of regioisomeric enol ethers.

Treatment of citronellal with t-BuLi and Jones' oxidation of the resulting alcohol affords the tert-butyl ketone 20, which is treated with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf to give a $10: 1$ mixture of $(Z)-21$ a and (E)-21a. Reaction of this mixture with 2 equiv of CAN and excess NaHCO_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ gives 20% of hydrolysis product $20,20 \%$ of cyclic ketone 22, and 2% of cyclic ketone 23 . Since hydrolysis of the silyl enol ether to give 20 is a major side reaction, the more hindered dimethylthexylsilyl enol ether was investigated. Oxidation of $21 \mathbf{b}^{27}$ with 2 equiv of CAN and excess $\mathrm{NaHCO} 3_{3}$ provides 42% of cyclic ketone 22. Unfortunately, the oxidative cyclization of aliphatic silyl enol ethers is not general. No cyclic products were obtained from oxidation of 21a or 21 b with $\mathrm{Cu}(\mathrm{OTf})_{2}$ or from oxidation of aliphatic silyl enol ethers analogous to 1 or 13 with less nucleophilic monosubstituted or 1,2-disubstituted double bonds.

The Mechanism of Oxidative Cyclization of Unsaturated Enol Ethers. The tandem oxidative cyclizations of $\mathbf{4 a}, \mathbf{4 b}$, and 7 involve six discreet steps: two one-electron oxidations, two cyclizations, loss of a proton, and loss of the silyl group. The first step is probably the one-electron oxidation of 4 to cation radical 24. Some information about the order of the remaining steps can be inferred from the products isolated. Loss of the silyl group from cation radical 24 would give radical 25 . One-electron oxidation of radical 25 would give enol cation 26. Each of these intermediates $24-26$ could cyclize to give cation radical 27, radical 28, or cation 29, respectively.

[^4]

The cyclization of a free enol radical such as 25 in these oxidations is unlikely since Curran and Chang have shown that cyclization of the enol radical that would be generated from 13 by oxidation and loss of the silyl group gives a 3:1 mixture of 5 -exo and 6 -endo products, ${ }^{28}$ while cyclization of 13 gives only 6 -endo products. The cyclization of a free enol cation such as 26 in these oxidations is unlikely since enol cations analogous to 26 cyclize exclusively 6 -endo, while we obtain exclusively 5 -exo products from oxidation of 4. ${ }^{29}$ To unambiguously establish that 26 does not give 29 , we prepared the α-bromo ketone precursor to 26 by bromination of 1 with CuBr_{2}. ${ }^{30}$ Treatment of the bromo ketone with $\mathrm{AgSbF}_{6}{ }^{29}$ provides no 5 or 6.

By a process of elimination, the cyclization probably proceeds through cation radical 24 to give cyclic cation radical 27 since the cyclization does not proceed through radical 25 or cation 26 . The exclusive formation of 6 -endo products from 13 and 5-exo products from 7a is consistent with the expected behavior of a very electrophilic cation radical such as 24. Cyclization of cation radicals has also been postulated in related electrochemical oxidative cyclizations. ${ }^{11}$

There are also three distinct possibilities for the second cyclization to form the tetralone ring. Cyclization of cation radical 27 could give cation radical 30 , which could lose a silyl group to give radical 31. Oxidation of radical 31 could give cation 32, which could lose a proton to give tetralones 5 and 6. Alternatively, loss of a silyl group from 27 could give radical 28 , which could cyclize to give radical 31. Finally, loss of a silyl group from 27 and oxidation could give cation 29, which could cyclize to cation 32. Cyclization of 4-phenyl-4-oxobutyl radicals followed by oxidation to give α-tetralones is well-known. ${ }^{1 a-c, 2 b}$ There is also ample precedent for the Friedel-Crafts cyclization of carbocations to aryl ketones to give α-tetralones. ${ }^{1 b, 31}$

We turned our attention to substrates containing a second double bond in an attempt to trap the monocyclic

[^5]intermediate and provide information about the mechanism of tetralone formation. α-Allylation ${ }^{32}$ of ketones 1 and 12 followed by silylation of the ketones 33a and 33b with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf affords silyl enol ethers 34a and 34b. To our disappointment, treatment of 34a with CAN gives 60% of triene $36 a$ and 12% of tricyclic ketone 38a. Oxidation of $34 a$ with $\mathrm{Cu}(0 \mathrm{Of})_{2}$ is even less successful, giving a complex mixture containing 7% of triene 36a, 10% of tricyclic ketone 38a, and 2\% of ketone 33a. Oxidation of 34 b with CAN gives 31% of triene 36 b , while oxidation with $\mathrm{Cu}(\mathrm{OTf})_{2}$ gives no identifiable products.

The presence of the allyl group completely changes the course of the reaction. The major process is loss of an acidic allylic proton from the cation radical 35 leading to a pentadienyl radical, which is oxidized to a cation, which loses the silyl group to give triene 36. Cyclization of 35a to give 37a is a minor process. It is noteworthy, that the second cyclization of 37a occurs exclusively to the benzene ring and that no monocyclic products are obtained, while cyclization of 13 gives mainly monocyclic products. Cyclization of the monocyclic cation radical obtained fróm 13 to give 19 will be slow since the benzoyl group is predominantly equatorial. On the other hand, cyclization of 37a should be fast since the benzoyl group is predominantly axial; the A value for the benzoyl group is 1.2 while the A value for the allyl group is 1.7. ${ }^{33}$
We turned our attention to silyl enol ether 43 in which the double bond was positioned so as not to interfere with the first cyclization. Alkylation ${ }^{34}$ of the THP ether of 5 -hexyn-1-ol with 5-bromo-1-pentene and hydrolysis ${ }^{35}$ of the THP ether affords 81% of 39 . Reduction of the triple bond of 39 with iron filings ${ }^{36}$ gives alcohol 40 containing a cis double bond. Tosylation of alcohol 40 followed by treatment of the resulting tosylate with NaCN affords nitrile $41 .{ }^{37}$ Addition of PhMgBr to 41 followed hydrolysis provides ketone 42, which is treated with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf to give a $5: 1$ mixture of silyl enol ethers (Z)-43 and (E)-43.
Oxidation of the $5: 1$ mixture of (Z) - and (E)-43 with $\mathrm{Cu}(\mathrm{OTf})_{2}$ affords 80% of a $4: 1$ mixture of tricyclic ketones 44 and 45. To our surprise, the benzene ring participates in the second cyclization instead of the double bond. This observation suggests that the second cyclization is also taking place through cation radical intermediate 49. As

[^6]
discussed above, the initial cyclization gives cation radical 49. Loss of the silyl group would give radical 50 . Oxidation of 50 would give cation 51 .
Cation 51 would be expected to cyclize preferentially to the double bond to give cyclohexyl cation 48. Intramolecular Friedel-Crafts alkylations of unsaturated phenyl ketones must be carried out under drastic conditions due to the deactivating effect of carbonyl group. ${ }^{31}$ Furthermore, olefinic double bonds are usually more reactive toward electrophilic agents than are aromatic rings. ${ }^{38}$ Therefore 44 and 45 are probably not formed by the Friedel-Crafts cyclization of cation 51 to give 54.

$\psi=10^{5} \mathrm{~s}^{-1}$
fast

Radical 50 should cyclize to both the double bond and aromatic ring at similar rates. The rate constant for the cyclization of the radical to the double bond to give cyclopentylmethyl radical 50 is about $10^{5} \mathrm{~s}^{-1} .39$ The rate constant for the cyclization to the aromatic ring of a radical analogous to 50 lacking the cyclopentane ring is $10^{4} \mathrm{~s}^{-1} .{ }^{2 b}$ Since Beckwith has shown that the presence of a cyclopentane ring in the tether increases the rate of the 5 hexenyl radical cyclization by 1 order of magnitude, ${ }^{40}$ the rate of cyclization of 50 to give 53 should also be about 10^{5} s^{-1}. This suggests that cyclization of the radical of 50 to the double bond and aromatic ring should occur at about the same rate. Since cyclization occurs exclusively to the

[^7]aromatic ring, radical 50 is probably not an intermediate.
Since neither cation 51 nor radical 50 should give exclusively 44 and 45 , by a process of elimination, cation radical 49 probably cyclizes to give the tricyclic cation radical 52, which then loses the silyl group, is oxidized, and is deprotonated to give 44 and 45 . Cyclization of cation radical 49 to give cyclopentanemethyl cation radical 46 should occur with a rate constant of about $10^{5} \mathrm{~s}^{-1}$ since the positive charge should not effect the rate of this cyclization. On the other hand, cyclization of the cation radical to give 52 should be much faster than $10^{5} \mathrm{~s}^{-1}$ since the nucleophilic radical should add to the electron-deficient benzene ring much more rapidly than radical 50 cyclizes to the parent phenyl ketone. Therefore cation radical 49 should cyclize exclusively to the aromatic ring as is observed.

Oxidative Cyclization of Silyl Enol Ethers of Alkynyl Aromatic Ketones. Since 5-hexynyl radicals cyclize readily, we decided to explore the oxidative cyclization of enol ethers containing triple bonds. Treatment of ketone 55^{41} with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf affords an 8:1 mixture of (Z)-56 and (E)-56. Oxidation of this mixture with Cu$(\mathrm{OTf})_{2}$ gives a complex mixture containing ketone 15 . If oxygen is not carefully excluded, 3-benzoylcyclohexanone $(57)^{42}$ is also obtained. Oxidation of 56 with CAN affords 18% of $15,4 \%$ of recovered silyl enol ether 56 , and 38% of acyclic α-nitrooxy ketone 58 . Cyclization of the cation radical onto the triple bond is slower than cyclization onto the double bond since 58 is the major product, while the acyclic nitrooxy ketone is a very minor product in the oxidative cyclization of 13 . The formation of 15 is of considerable mechanistic significance since it could only arise by hydrogen abstraction by a cyclohexenyl radical. The formation of 15 is consistent with the cyclization of the cation radical analogous to 24 , or the radical analogous to 25 . Cyclization of the cation analogous to 26 would give a cyclohexenyl cation that could not be reduced to $\mathbf{1 5}$.

We examined the oxidative cyclization of silyl enol ether 60 since much higher yields of products are obtained from 4a than from 13. Alkylation of the THP ether of 5-hex-yn-1-ol with methyl iodide and hydrolysis of the THP ether gives 5 -heptyn-1-ol. Tosylation of the alcohol, displacement of the tosylate with cyanide, and addition of PhMgBr to the nitrile provides ketone 59. Reaction of the ketone with $\mathrm{Et}_{3} \mathrm{~N}$ and TBDMSOTf provides an 8:1 mixture of $(Z)-60$ and $(E)-60$. Treatment of this mixture with 2.5 equiv of $\mathrm{Cu}(\mathrm{OTf})_{2}$ results in incomplete consumption of starting material 60 , giving a complex mixture from which tricyclic ketone 64 was obtained in 30% yield. The formation of 64 requires four one-electron oxidations and the addition of a molecule of water. Oxidation of 60 with 6.5 equiv of $\mathrm{Cu}(\mathrm{OTf})_{2}$, excess $\mathrm{Cu}_{2} \mathrm{O}$, and 3 equiv of $\mathrm{H}_{2} \mathrm{O}$ in acetonitrile gives 64 in 70% yield. Under anhydrous conditions a complex mixture of products are obtained.

[^8]Oxidation of 60 with 3 equiv of CAN provides 38% of 64 .

The spectral data of 64 are very similar to those of 4-hydroxy-4-methyl-2,5-cyclohexadien-1-one. ${ }^{43}$ A plausible mechanism for the formation of 64 involves the oxidative cyclization of 60 to give naphthol 61 , which is strictly analogous to the formation of 5 from 4 except that the product benzocyclohexadienone tautomerizes to the phenol. Naphthol 61 can be oxidized to cation radical 62, which can react with water and lose a proton to give radical 63, which can be oxidized to give 64. There is ample precedent for the oxidation of p-alkylphenols to 4 -alkyl-4-hydroxy-2,5-cyclohexadien-1-ones by Tl (III) salts, ${ }^{4 \mathrm{a}}$ $\mathrm{CAN},{ }^{44 \mathrm{~b}} \mathrm{~Pb}(\mathrm{OAc})_{4}{ }^{44 \mathrm{c}}$ single oxygen, ${ }^{43,44 \mathrm{~d}}$ iodobenzene diacetate, ${ }^{44 \mathrm{e}} \mathrm{Mn}$ (III) acetylacetonate, ${ }^{44 \mathrm{f}}$ and $\mathrm{MnO}_{2}{ }^{44 \mathrm{~g}}$

Effect of Double Bond Stereochemistry on the Oxidative Cyclization of Silyl Enol Ethers. The oxidative cyclization of enol silyl ether (Z)-4a is highly stereospecific, giving 95% of 5 a and 5% of 6 a . If the cyclization proceeds through cation radical 24, as we have proposed, different mixtures of products might be obtained from $(E)-4 a$. If the cyclization proceeds through radical 25 or cation 26, identical mixtures of products should be obtained from both (E) - and (Z)-4a. Unfortunately, pure (E)-4a could not be obtained by flash chromatography of the $5: 1$ mixture of $(Z)-4 \mathrm{a}$ and $(E)-4 \mathrm{a}$, and alternative silylation procedures did not give more (E)-4a. Oxidative cyclization of a slightly enriched $3: 2$ mixture of (Z) - and $(E)-4 \mathrm{a}$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$ affords a 4.5:1 mixture of 5 a and 6 a suggesting that $(E)-4$ a gives mainly 6 a.

We therefore turned our attention to methyl enol ethers that could be prepared in pure E and Z forms. Treatment of ketone la with $\mathrm{CH}(\mathrm{OMe})_{3}$ adsorbed on Montmorillonite K10 clay in hexane gives the dimethyl ketal. ${ }^{45}$ Treatment of the dimethyl ketal with TMSOTf and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords a 1:1.8 mixture of methyl enol ethers (Z)-65 and (E)-65. ${ }^{46}$ Flash chromatography provides an 8:1 mixture of $(Z)-65$ and (E)-65. Replacement of $i-\mathrm{Pr}_{2} \mathrm{NEt}$ by $\mathrm{Et}_{3} \mathrm{~N}$ provided a 1:4.2 mixture of (Z)-65 and (E)-65, which was enriched to a $1: 10$ mixture by flash chromatography. Oxidation of the $8: 1$ mixture of $(Z)-65$ and (E)-65 with $\mathrm{Cu}(\mathrm{OTf})_{2}$ gives a $7: 1 \mathrm{mixture}$ of 5 a and 6 a . Similar treatment of the 1:10 mixture of (Z)-65 and (E)-65

[^9]

Figure 2. Possible transition states for the cyclization of 4 and 65. The Z-isomer cyclizes to 5 a through ZT. The E-isomer cyclizes to 6 a through EC1.
affords a 1:7 mixture of 5 a and 6 a . Complex mixtures were obtained by oxidation of 65 with CAN.

These results establish that $(Z)-4 a$ and $(Z)-65$ give predominantly the trans-fused ketone $5 \mathrm{5a}$, while (E)-4a and (E)-65 give mainly the cis-fused ketone 6a. Therefore the cyclization must be proceeding through cation radical 24 that retains the geometry of the starting enol ether. Examination of Newman projections of the possible transition states for the cyclizations of the cation radicals provides a possible explanation for the observed stereoselectivity (see Figure 2). The cation radical derived from (Z)-65 cyclizes through transition state ZT to give 5a rather than through either $\mathbf{Z C 1}$ or $\mathbf{Z C 2}$ to give 6a. The cation radical derived from (E)-65 cyclizes through either EC1 or EC2 to give 6a rather than through ET to give 5a.

An examination of steric interactions suggests that this observation can be explained by postulating that the OR group is "large" so that ZT and EC1 are preferred to minimize steric interactions. Why should the OR group be larger than a phenyl group? First, there must be an anion associated with the positive charge that is located largely on the oxygen atom. Second, the reduced metal salt may still be associated with the oxygen.

This model suggests that the alkene geometry is unimportant. Isomerization of the double bond of ketone la with p-toluenesulfinic acid ${ }^{47}$ provided a $5: 1 \mathrm{E} / Z$ mixture of 1a. This mixture was converted to the (Z)-TBDMS enol ether and oxidized with $\mathrm{Cu}(\mathrm{OTf})_{2}$ to give a 20:1 mixture
(47) Gibson, T. W.; Strassburger, P. J. Org. Chem. 1976, 41, 791.
of $5 a$ and 6 a . Thus the alkene geometry has no effect on the stereoselectivity of the cyclization.

Attempted Oxidative Cyclization of Other Substrates. In an attempt to extend the scope of the reaction, we briefly examined the oxidative cyclization of other derivatives of phenyl ketone la and the analogous aldehyde, ester, and α, β-unsaturated ketone. Complex mixtures are obtained by oxidation of $66 a$ with either $\mathrm{Cu}\left(\mathrm{OTf}_{\mathrm{f}}^{2}\right.$ or CAN. Attempted oxidation of ketene silyl acetal $\mathbf{6 6} \mathbf{b}^{48}$ with either $\mathrm{Cu}\left(\mathrm{OTf}_{2}\right.$ or CAN in $\mathrm{CH}_{3} \mathrm{CN}$ leads only to hydrolysis to give the methyl ester. Attempted oxidation of tert-butyldimethylsilyl enol ether 66 c with $\mathrm{Cu}(\mathrm{OTf})_{2}$ or CAN also results in hydrolysis. Hydrolysis was also the major reaction on attempted oxidation of enamines 67a, ${ }^{49}$ $67 b^{49}$ or 67 c with $\mathrm{Cu}(\mathrm{OTf})_{2}$ or CAN. Enol acetate $67 \mathrm{~d}^{50}$ does not react with CAN in $\mathrm{CH}_{3} \mathrm{CN}$. Although the oxidative dimerization of N -vinylcarbazoles via cation radical intermediates is well-known, ${ }^{51}$ we were unable to obtain any cyclic products by oxidation of $\mathbf{6 6 d} \mathrm{d}^{52}$ with either Fe $\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Cu}(\mathrm{OTf})_{2}$, or CAN.

Formation of Radicals by Oxidative Cleavage of Siloxycyclopropanes. Murai and co-workers reported that treatment of siloxycyclopropane 68 with AgBF_{4} or $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ leads to the formation of 1,6 -diketone $71 .{ }^{53}$ They proposed that the electrophilic attack of Ag^{+}or Cu^{2+} at the least substituted carbon atom of 68 gives 69 , which loses $\mathrm{Me}_{3} \mathrm{SiF}$ and BF_{3} to give the β-metallo ketone 70 , which then dimerizes to afford 1,6-diketone 71. The conditions for these reactions are remarkably similar to those of the oxidation of enol ethers with $\mathrm{Cu}(\mathrm{OTf})_{2}$, which we have shown proceed through cation radicals. A possible first step in the oxidation of 68 might be formation of the cation radical 72. We therefore set out to construct an unsaturated siloxycyclopropane that could give a 5 -hexenyl cation radical that might cyclize to give the cyclopentanemethyl radical faster than it dimerizes to the 1,6-diketone.

In fact, the oxidation of cyclopropanols to give radicals is well-known. Oxidation of 1-methoxycyclopropanol with Fe (III) or $\mathrm{Cu}\left(\right.$ II) gives $\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2}{ }^{+}$, which adds to electron-deficient alkenes. ${ }^{54}$ Oxidation of cyclopropanols with Mn (III) 2-pyridinecarboxylate generates β-keto radicals, which add to electron rich silyl enol ethers. ${ }^{55}$ Electrophilic ring opening of siloxycyclopropanes with $\mathrm{Hg}(\mathrm{OAc})_{2}$, followed by reduction of the resulting organomercury compound with NaBH_{4}, is an efficient procedure for the generation of β-keto radicals under reductive conditions. ${ }^{56}$

[^10]

Oxidation of cis-5-octen-1-ol with PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords a mixture of cis- and trans-5-octen-1-al. The double bond isomerizes by a facile ene-retro ene process. ${ }^{57}$ Addition of PhMgBr and Jones' oxidation of the resulting alcohol gives 1-phenyl-5-octen-1-one. Treatment of the ketone with TMSCl and DBU in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives enol ether $73 .{ }^{58}$ Cyclopropanation with ZnEt_{2} and $\mathrm{CH}_{2} \mathrm{I}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}^{59}$ affords a mixture of recovered 73, siloxycyclopropane 74 (31%), and dicyclopropane.

Oxidation of 74 with 2 equiv of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ and excess $\mathrm{Cu}_{2} \mathrm{O}$ in $\mathrm{Et}_{2} \mathrm{O}$ gives a complex mixture whose ${ }^{1} \mathrm{H}$ NMR spectrum shows a broad doublet at $\delta 1.65$ as expected for the allylic methyl group of 77. Flash chromatography affords a fraction (21%) that appears to consist mainly of all four stereoisomers of 77 as determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral and capillary GC analysis. An authentic sample of 77 was prepared to confirm the structure assignment.

Ozonolysis of norbornene by Schreiber's procedure ${ }^{60}$ gives aldehyde ester 78. Wittig olefination of 78 with ethyltriphenylphosphonium bromide and n-BuLi in THF and subsequent hydrolysis of the ester affords acid 79, which is treated with 2 equiv of PhLi in ether to give a $6: 8: 7$ mixture of the two stereoisomers of $(Z)-77$ and the inseparable stereoisomers of (E)-77, respectively, as determined by capillary GC. Equilibration of this mixture with p toluenesulfinic acid in dioxane at reflux ${ }^{47}$ provides a $3: 4: 28$ mixture of the two stereoisomers of $(Z)-77$ and the inseparable stereoisomers of (E)-77, respectively. Analysis of the ${ }^{13} \mathrm{C}$ NMR spectra of this mixture indicates that $(E)-77$

[^11]consists of a $2: 3$ mixture of stereoisomers. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and capillary GC data, including co-injection, of the authentic samples are identical with those of the products $(Z)-77$ and (E)-77 obtained from the oxidative cyclization of siloxycyclopropane 74. Oxidation of 74 gives a 1:1:5 mixture of the two stereoisomers of $(Z)-77$ and the inseparable stereoisomers of (E)-77. Analysis of the ${ }^{13} \mathrm{C}$ NMR spectra of the mixture indicated that $(E)-77$ is a $1: 1$ mixture of stereoisomers.
A plausible mechanism for the formation of $\mathbf{7 7}$ is the oxidation of 74 by $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ to generate cation radical 75, which undergoes 5-exo cyclization to give cyclopentanealkyl radical 76, which is oxidized by $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ to variety of products including 77. Although copper(II) carboxylates oxidize radicals to alkenes in high yield, $\mathrm{Cu}\left(\mathrm{OTf}_{2}\right.$ and $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ give complex mixtures of products that are consistent with the formation of cationic intermediates. ${ }^{5 e}$ The cyclization of a 5 -hexenylmetal intermediate analogous to 70 must also be considered. The cyclization of 5 -hexenylmetals to give cyclopentylmethylmetals is known for lithium, ${ }^{61}$ magnesium, ${ }^{62}$ and aluminum. ${ }^{63}$ The cyclization of 5-hexenylcopper(II) species related to those that would be formed in this reaction is not known. However, this is not necessarily significant since only alkylcopper(I) compounds have been extensively studied.

Conclusion. Oxidative cyclization of $\delta, \epsilon-$ and ϵ, ζ-unsaturated enol silyl ethers $\mathbf{4 a}$ and $\mathbf{4 b}$ with cupric triflate and cuprous oxide or ceric ammonium nitrate and sodium bicarbonate in acetonitrile provides the tricyclic ketones 5 a and 5 b stereoselectively. These cyclizations proceed by oxidation of 4 to the cation radical 24 followed by cyclization of 24 to cation radical 27. This cation radical undergoes a second cyclization to give cation radical 30, which loses the silyl group, undergoes a second oxidation, and loses a proton to give 5 . The stereochemistry of the cycloadduct is controlled by the stereochemistry of the enol ether. The Z-enol methyl ether (Z) -65 leads mainly to 5 a while the E-enol methyl ether (E)-65 leads mainly to 6 a.

Oxidation of siloxycyclopropane 74 with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ generates cation radical 75 , which cyclizes to 76 , which is oxidized to give 21% of cyclopentane 77 . This suggests that cation radicals are intermediates in the oxidative dimerization of siloxycyclopropanes. However, the oxidative cyclization of siloxycyclopropanes containing a double bond is not synthetically useful because of the low yield and the difficulty in selective cyclopropanation of unsaturated silyl enol ethers.

Experimental Section

General. NMR spectra were recorded at 300 MHz in CDCl_{3}. Chemical shifts are reported in δ, and coupling constants in hertz. IR spectra are reported in cm^{-1}. All air-sensitive reactions were run under N_{2} in flame-dried glassware with magnetic stirring. Reagents were added via oven-dried syringes through septa. $\mathrm{CH}_{3} \mathrm{CN}$ was dried by distillation from calcium hydride. Cupric triflate was purchased from Fluka and used without purification. Cuprous oxide was purchased from Alfa.

Synthesis of 1-Phenyl-6(Z)-nonen-1-one (1a). A solution of 6 -nonenal ($1.67 \mathrm{~g}, 11.9 \mathrm{mmol}$) in 1 mL of ether was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $\mathrm{PhMgBr}(3.0 \mathrm{M}, 4.5 \mathrm{~mL}, 13.5$ mmol) in ether. The solution was stirred overnight at $25^{\circ} \mathrm{C}$, poured into crushed ice, acidified with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, and extracted with ether. The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give 2.39 g of crude alcohol. Jones' reagent (1.4 M ,

[^12]$10 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was added to a solution of crude alcohol (2.39 g) in 20 mL of acetone at $0^{\circ} \mathrm{C}$. The solution was warmed to 25 ${ }^{\circ} \mathrm{C}$ and stirred for 1.5 h . Saturated NaHSO_{3} solution was added to the reaction mixture to destroy the remaining $\mathrm{Cr}(\mathrm{VI})$, and the solution was stirred until the color of $\mathrm{Cr}(\mathrm{VI})$ disappeared. The solution was extracted with ether, which was washed with saturated $\mathrm{NaHCO} \mathrm{O}_{3}$ solution and saturated NaCl solution, dried (MgSO_{4}), and evaporated in vacuo to give 2.03 g of crude 1 a . Purification by flash chromatography on silica gel (9:1 hexaneEtOAc) gave $1.80 \mathrm{~g}(70 \%)$ of pure 1a: ${ }^{1} \mathrm{H}$ NMR 7.96 (dd, 2, J $=8.0,1.5), 7.54(\mathrm{tt}, 1, J=7.0,1.5), 7.46(\mathrm{ddd}, 2, J=8.0,7.0,1.5)$, 5.37 (m, 2), 2.98 (t, 2, J = 7.4), 1.88-2.16 (m, 4), 1.76 (m, 2), 1.45 (m, 2), 0.96 ($\mathrm{t}, 3, J=7.5$); ${ }^{13} \mathrm{C}$ NMR 202.5, 137.0, 132.8, 132.0, 128.6, 128.5, 128.0, 38.4, 29.4, 26.9, 24.0, 20.5, 14.3; IR (neat) 3030, 2970, 2940, 2880, 169, 1603, 1585, 750, 690.
Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-1(Z),6(Z)-nonadienyl)oxy]silane [(Z)-4a] and (1,1-Di-methylethyl)dimethyl[(1-phenyl-1(E),6(Z)-nonadienyl)oxy]silane [$(\boldsymbol{E})-4 \mathrm{a}$]. Method A. A solution of TBDMSOTf (0.67 $\mathrm{mL}, 2.9 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $25^{\circ} \mathrm{C}$ to a solution of $1 \mathrm{a}(216 \mathrm{mg}, 0.99 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 2.9 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{14}$ The solution was stirred at $25^{\circ} \mathrm{C}$ for 2 h , diluted with ether, washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give crude 4a. Purification by flash chromatography on silica gel (hexane containing 0.5% pyridine) gave 292 mg (90%) of a $5: 1$ mixture of (Z) - and (E)-4a. Careful chromatography on silica gel (hexane) gave pure (Z)-4a and a more polar fraction containing a 3:2 mixture of (Z)- and (E)-4a.

Method B. To a solution of diisopropylamine ($1.0 \mathrm{~mL}, 7.13$ mmol) in 10 mL of THF at $0^{\circ} \mathrm{C}$ was added a solution of n-BuLi ($2.2 \mathrm{M}, 3.3 \mathrm{~mL}, 7.26 \mathrm{mmol}$) in hexane, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . The LDA solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of $1 \mathrm{a}(1.50 \mathrm{~g}, 6.94 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h and treated with TBDMSOTf $(2.30 \mathrm{~mL}, 10.0 \mathrm{mmol}){ }^{15}$ The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h and at $0^{\circ} \mathrm{C}$ for 2 h and diluted with ether. The ether layer was washed with saturated NaHCO 3 solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 2.5 g of crude 4a. Flash chromatography on silica gel (hezane) deactivated with methanol gave 2.0 g (88%) of pure (Z)-4a.

The data for (Z)-4a: ${ }^{1} \mathrm{H}$ NMR 7.42 (dd, $2, J=8.0,1.2$), 7.18-7.44 (m, 3), 5.38 (m, 2), 5.11 (t, 1, $J=7.2$), 2.21 (m, 2), 1.95-2.16 (m, 4), 1.48 ($\mathrm{tt}, 2, J=5.6,5.6$), 0.99 ($\mathrm{s}, 9$), 0.98 ($\mathrm{t}, 3$, $J=7.5$), -0.04 (s, 6); ${ }^{13} \mathrm{C}$ NMR 149.4, 139.8, 131.9, 129.0, 127.9, 127.3, 125.9, 111.7, 29.8, 27.0, 25.9, 25.7, 20.5, 18.3, 14.4, -4.0; IR (neat) $3030,2970,2940,2880,1655,1603,1585,750,690$. Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{34}$ OSi: C, $76.30 ; \mathrm{H}, 10.37$. Found: $\mathrm{C}, 76.17 ; \mathrm{H}, 10.36$.

Partial NMR data for (E)-4a were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR $5.33(\mathrm{~m}, 2), 5.08(\mathrm{t}, 1, J=7.2), 2.21(\mathrm{~m}, 2), 1.95-2.16$ $(\mathrm{m}, 4), 1.45(\mathrm{tt}, 2, J=5.6,5.6), 0.94(\mathrm{t}, 3, J=7.5), 0.92(\mathrm{~s}, 9), 0.05$ (s, 6); ${ }^{13} \mathrm{C}$ NMR 111.1.

Reaction of (Z)-4a with Cupric Triflate. A solution of (Z)-4a ($113 \mathrm{mg}, 0.34 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 5 h using a syringe pump to a solution of cupric triflate (250 $\mathrm{mg}, 0.69 \mathrm{mmol}$) and cuprous oxide ($166 \mathrm{mg}, 1.16 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, diluted with 20 mL of ether, acidified with $5 \% \mathrm{HCl}$ solution, washed with saturated NaCl solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 80 mg of crude product which was purified by flash chromatography on silica gel ($9: 1$ hexaneEtOAc) to give 66 mg (90%) of an inseparable 20:1 mixture of (3a $\alpha, 9 \beta, 9 a \beta$)- 9 -ethyl-1,2,3,3a,9,9a-hexahydro-4 H-benz $[f$ Iinden- 4 one (5 a) and ($3 \mathrm{a} \alpha, 9 \alpha, 9 \mathrm{a} \alpha$)-9-ethyl-1,2,3,3a,9,9a-hexahydro-4Hbenz $[f]$ inden-4-one ($6 a$).

The data for $5 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR 8.06 (dd, $1, J=7.7,1.4$), 7.52 (ddd, $1, J=7.9,7.3,1.4$), 7.42 (br d, 1, $J=7.9$), 7.31 (ddd, $1, J=7.7$, $7.3,1.6$), 2.96 (ddd, $1, J=10.7,3.8,3.8, H_{9}$), 2.51 (ddd, $1, J=13.3$, 9.8, 8.0, $\mathrm{H}_{3 \mathrm{a}}$), 2.23 (dddd, $1, J=13.3,10.7,7.3,4.1, \mathrm{H}_{9 \mathrm{e}}$), $1.65-2.15$ (m, 7), 1.49 (apparent br q,$J=7.4$), $0.76\left(\mathrm{t}, 3, J=7.4\right.$); ${ }^{13} \mathrm{C}$ NMR $200.2,146.2,134.9,133.0,127.3,126.7,126.2,55.7,46.6,45.6,30.7$, $23.9,22.9,22.2,8.1$; IR (neat) $3080,3040,2990,2885,1695,1605$, 775. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.07$; $\mathrm{H}, 8.47$. Found: C, 84.02; H, 8.34.

Reaction of (Z)-4a with Ceric Ammonium Nitrate (CAN). A solution of (Z)-4a ($39 \mathrm{mg}, 0.12 \mathrm{mmol}$) in 2.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 3 h using a syringe pump to a solution of CAN ($130 \mathrm{mg}, 0.24 \mathrm{mmol}$) and sodium bicarbonate ($40 \mathrm{mg}, 0.48 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for 2-3 h, diluted with 10 mL of ether, acidified with $5 \% \mathrm{HCl}$ solution, washed with saturated NaCl solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give 32 mg of crude product which was purified by flash chromatography on silica gel ($9: 1$ hexaneEtOAc) to give $18.5 \mathrm{mg}(73 \%)$ of a $20: 1$ mixture of $5 a$ and $6 a$.

Equilibration of 5 a and 6a. A solution of the $20: 1$ mixture of 5 a and $6 \mathrm{a}(22.3 \mathrm{mg})$ in 1 mL of 1 N KOH solution in methanol was stirred for 3 h . The reaction mixture was diluted with 10 mL of water and extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give an inseparable 1:7.7 mixture of 5 a and 6 a . The data for 6 a were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 7.92 (dd, $1, J=8$, 1), 7.48 (ddd, $1, J=8,8,1$), 7.30 (ddd, $1, J=8,8,1$), 7.24 (dd, $J=8,1$), 3.01 (ddd, $1, J=8,8,4, \mathrm{H}_{9}$), 2.78 (ddd, $1, J=7,7,1.5$, $\mathrm{H}_{3 \mathrm{e}}$), 2.53 (dddd, $1, J=11,8,7,2, \mathrm{H}_{9 \mathrm{a}}$), $2.05(\mathrm{~m}, 2), 1.65-1.90$ (m, 2), $1.35-1.65(\mathrm{~m}, 2), 1.22-1.35(\mathrm{~m}, 2), 0.93(\mathrm{t}, 3, J=7.6)$; ${ }^{13} \mathrm{C}$ NMR $202.0,146.5,133.0,131.5,129.9,127.3,126.7,47.2,43.4,43.0,32.2$, 31.4, 31.2, 24.0, 12.3; IR (neat) 3080, 3040, 2970, 2880, 1685, 1608, 760.

Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-1(Z), $7(Z)$-decadienyl)oxy]silane [(Z)-4b]. Ketone 1 lb (228 mg , 0.99 mmol) was converted to $306.8 \mathrm{mg}(90 \%)$ of (Z)-4b as described in method B: ${ }^{1} \mathrm{H}$ NMR 7.44 (dd, $2, J=8.0,1.4$), $7.16-7.33$ (m, 3), 5.35 ($\mathrm{m}, 2$), $5.10(\mathrm{t}, 1, J=7.1$), $2.15-2.25(\mathrm{~m}, 2), 1.96-2.11$ (m, 4), $1.36-1.46(\mathrm{~m}, 4), 0.97(\mathrm{~s}, 9), 0.93(\mathrm{t}, 3, J=7.5),-0.05(\mathrm{~s}, 6)$; ${ }^{13} \mathrm{C}$ NMR 149.2, 139.8, 131.6, 129.2, 127.8, 127.3, 125.8, 111.9, 29.6, $29.3,27.0,26.0,25.9,20.5,18.3,14.4,-4.0$; IR (neat) 3003,2960 , $2930,2860,1603,1560,775,690$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}$: C, 76.67; H, 10.53. Found: C, 76.57; H, 10.53.

Oxidation of $(Z)-4 \mathrm{~b}$ with Cupric Triflate. A solution of (Z)-4b ($220 \mathrm{mg}, 0.64 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 5 h using a syring pump to a solution of cupric triflate (500 $\mathrm{mg}, 1.38 \mathrm{mmol}$) and cuprous oxide ($332 \mathrm{mg}, 2.32 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 2-3 h and worked up as described above to give 207 mg of crude product which was purified by flash chromatography on silica gel ($9: 1$ hexane-EtOAc) to give $126 \mathrm{mg}(87 \%$) of a $>20: 1$ mixture of ($4 \mathrm{a} \alpha, 9 \mathrm{a} \beta, 10 \alpha$)-10-ethyl-1,3,4,4a,9a,10-hexahydro-9-(2H)-anthracenone (5b) and ($4 \mathrm{a} \alpha, 9 \mathrm{a} \alpha, 10 \alpha$)-10-ethyl$1,3,4,4 \mathrm{a}, 9 \mathrm{a}, 10$-hexahydro- $9(2 \mathrm{H})$-anthracenone (6 b).

The data for 5 b: ${ }^{1} \mathrm{H}$ NMR 8.01 (dd, $, J=7.8,1.4$), 7.52 (ddd, $1, J=8.0,7.3,1.4), 7.41(\mathrm{br} \mathrm{d}, 1, J=8.0), 7.29(\mathrm{ddd}, 1, J=7.8$, 7.3, 1.1), 2.88 (ddd, $1, J=10.4,3.6,3.6, \mathrm{H}_{10}$), 2.37 (m, 1), 2.08-2.27 (m, 3), 1.93-1.98 (m, 1), 1.65-1.93 (m, 3), 1.08-1.40 (m, 4), 0.70 ($\mathrm{t}, 3, J=7.4$) ${ }^{13} \mathrm{C}$ NMR 200.1, 145.1, 133.3, 133.2, 127.1, 126.6, $126.1,50.9,43.8,40.6,31.2,26.1,25.6,25.3,20.5,7.60$; IR (neat) 3060, 3040, 2940, 2860, 1670-1700, 1605, 765. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16 ; \mathrm{H}, 8.83$. Found: C, 84.19; H, 8.78.

Reaction of (Z) $\mathbf{- 4 b}$ with CAN. A solution of (Z) $\mathbf{- 4 b}$ (80 mg , 0.23 mmol) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 5 h using a syringe pump to a solution of CAN ($347 \mathrm{mg}, 0.63 \mathrm{mmol}$) and sodium bicarbonate ($100 \mathrm{mg}, 1.19 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{c}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ and worked up as described above to give 57.3 mg of crude product which was purified by flash chromatography on silica gel (9:1 hexane-EtOAc) to give $22.3 \mathrm{mg}(42 \%$) of a $4.3: 1$ mixture of 5 b and 6 b and $1.6 \mathrm{mg}(3 \%)$ of a compound tentatively identified as the acyclic α-nitrooxy ketone ${ }^{64}$ based on the absorbtion at $\delta 6.02$ (dd, $1, J=8.5,4.1$).

Equilibration of $\mathbf{5 b}$ and $\mathbf{6 b}$. A solution of the above $>\mathbf{2 0 : 1}$ mixture of 5 b and $\mathbf{6 b}(35.9 \mathrm{mg}$) in 1 mL of 1 N KOH solution in methanol was stirred for 3 h . The reaction mixture was diluted with 10 mL of water and extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined ether layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give a $1: 2.43$ mixture of $5 b$ and $6 b$. Flash chromatography on silica gel ($9: 1$ hexane-EtOAc) gave 16.5 mg of pure 6 b , followed by 15.3 mg of mixed fractions followed by 1.0 mg of pure $\mathbf{5 b}$.

[^13]The data for 6b: ' ${ }^{\text {H }}$ NMR 8.04 (dd, $1, J=7.8,1.0$), 7.46 (ddd, $1, J=7.6,7.5,1.5$), 7.29 (ddd, $1, J=7.8,7.5,1.0$), 7.19 (dd, 1 , $J=7.6,1.5$), 2.93 (br s, 1, $W_{1 / 2}=10$), 2.62 (br d, $J=12$), 2.53 (br dd, $1, J=7,7$), 2.24 (m, 1), 1.42-1.86 (m, 5), 1.10-1.42 (m, 4), 1.05 (t, 3, $J=7.4$); ${ }^{13} \mathrm{C}$ NMR 199.6, 146.8, 133.2, 131.1, 129.9, 127.1, 126.4, 47.0, 43.0, 40.5, 30.1, 29.1, 26.3, 26.0, 22.8, 12.8; IR 3060, 3040, 2940, 2860, 1670-1700, 1605, 765. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16 ; \mathrm{H}, 8.83$. Found: C, 83.95; H, 8.85.

Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-3,7-dimethyl-1(Z),6-octadienyl)oxy]silane [(Z)-7]. 3,7-Di-methyl-1-phenyl-6-octen-1-one ($230 \mathrm{mg}, 1.00 \mathrm{mmol}$) was converted to $305 \mathrm{mg}(90 \%$) of an $8: 1$ mixture of (Z)- and (E) $\mathbf{7}$ as described in method A. Careful flash chromatography on silica gel (hexane) gave pure (Z)-7: ${ }^{1} \mathrm{H}$ NMR 7.39-7.45 (m, 2), 7.20-7.30 (m, 3), 5.14 (tqq, $1, J=7.2,1.4,1.2$), 4.86 (d, $1, J=9.7$), 4.80 (d, $1, J=9.7$, (E)-7), 2.62-2.77 (m, 1), 1.95-2.05 (m, 2), 1.68 (d, 3, $J=1.4$), 1.60 (br s, 3), 1.28-1.40 (m, 2), 1.01 (d, 3, $J=6.8$), 0.98 (s, 9), -0.05 (s, 6); ${ }^{13} \mathrm{C}$ NMR 148.5, 140.1, 131.0, 127.8, 127.3, 126.2, 125.0, 118.4, $37.9,30.0,26.1,25.9,25.8,20.8,18.3,17.6,-2.9$; IR (neat) 3060 , 3030, 2960, 2920, 2850, 1653, 1580, 770, $690 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36}$ OSi: C, 76.23; H, 10.47. Found: C, 76.03; H, 10.46 .

Reaction of (Z). 7 with Cupric Triflate. A solution of $(Z)-7$ ($141 \mathrm{mg}, 0.41 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 5 h using a syringe pump to a solution of cupric triflate (300 mg , 0.82 mmol) and cuprous oxide ($200 \mathrm{mg}, 1.4 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 2-3 h and worked up as described above to give 126 mg of crude product which was purified by flash chromatography on silica gel ($9: 1$ hexane-EtOAc) to give 49.5 mg of ($3 \alpha, 3 \mathrm{a} \alpha, 9 \alpha \beta$)-1,2,3,3a,9,9a-hexahydro-3,9,9-trimethyl-4 H -benz $[f]$ inden-4-one (8), followed by 27.2 mg of mixed fractions and 6.4 mg of ($3 \alpha, 3 \mathrm{a} \alpha, 9 \alpha$)-1,2,3,3a,9,9a-hexahydro-3,9,9-trimethyl-4 H-benz $[f]$ -inden-4-one (9) $(83.1 \mathrm{mg}(90 \%)$ of a $3.2: 1$ mixture of 8 and 9).
The data for 8: ${ }^{1} \mathrm{H}$ NMR 8.00 (ddd, $1, J=8.8,1.6,1.0$), 7.51 (ddd, $1, J=7.7,7.0,1.6$), 7.46 (ddd, $1, J=7.0,1.5,1.0$), 7.28 (ddd, $1, J=8.8,7.7,1.5$), $2.36\left(\mathrm{~m}, 1, \mathrm{H}_{3}\right), 2.26\left(\mathrm{dd}, 1, J=13.6,8.7, \mathrm{H}_{3 a}\right)$, 2.15 (ddd, $1, J=13.6,10.9,7.1, \mathrm{H}_{9 a}$), 1.95 (dddd, $1, J=10.8,8.0$, 7.1, 6.5), 1.80 (dddd, $1, J=10.3,7.1,5.4,2.7$), $1.5-1.7$ (m, 2), 1.39 ($\mathrm{s}, 3$), 1.26 (s, 3), 1.24 (d, $3, J=6.5$); ${ }^{13} \mathrm{C}$ NMR 200.1, $153.7,133.2$, $132.5,126.9,126.3,126.2,55.8,53.2,37.7,33.3,31.7,28.6,24.7$, 23.2, 21.5; IR (neat) $3075,3040,2970,2880,1700,1608,760$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$: $\mathrm{C}, 84.16 ; \mathrm{H}, 8.83$. Found: $\mathrm{C}, 84.18 ; \mathrm{H}, 8.96$.

The data for 9 : ${ }^{1} \mathrm{H}$ NMR 7.86 (dd, $1, J=7.6,1.4$), 7.51 (ddd, $1, J=7.9,7.3,1.4$), 7.36 (br d, $1, J=7.9$), 7.30 (ddd, $1, J=7.6$, 7.3, 1.2), 2.66 (dd, $1, J=8.2,5.5, \mathrm{H}_{3 \mathrm{e}}$), 2.42 (ddd, $1, J=11.5,8.2$, $7.0, \mathrm{H}_{9}$), $2.18\left(\mathrm{~m}, 1, \mathrm{H}_{3}\right), 1.70-1.90(\mathrm{~m}, 2), 1.43(\mathrm{~s}, 3), 1.25(\mathrm{~s}, 3)$, 1.21 (d), $3, J=6.8$), $1.0-1.30(\mathrm{~m}, 2)$; ${ }^{13} \mathrm{C}$ NMR 202.0, $150.2,133.4$, 132.0, 127.4, 126.3, 125.3, 55.7, 50.4, 40.6, 36.0, 34.6, 34.1, 29.4, 26.0, 21.4; IR (neat) 3075, 3040, 2970, 2880, 1700, 1608, 760. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16 ; \mathrm{H}, 8.83$. Found: C, 84.12; $\mathrm{H}, 8.96$.

Reaction of (Z)-7 with CAN. A solution of $(Z)-7$ (210 mg , 0.606 mmol) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 5 h using syringe pump to a solution of CAN ($997 \mathrm{mg}, 1.819 \mathrm{mmol}$) and sodium bicarbonate ($210 \mathrm{mg}, 2.450 \mathrm{mmol}$) in 9 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ and worked up as described above to give 152 mg of crude product. Purification by flash chromatography on silica gel (9:1 hexane-EtOAc) gave $101 \mathrm{mg}(73 \%)$ of a $3: 1$ mixture of 8 and 9 .

Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-1(Z), 6-heptadienyl)oxy]silane [(Z)-13]. Ketone 12^{23} (250 mg , 1.36 mmol) was converted to 250 mg of pure (Z) -13 and 70 mg of a $2: 1$ mixture of (Z) - and (E)-13 (combined yield 85%) as described in method A.

The data for (Z). 13: ${ }^{1} \mathrm{H}$ NMR 7.48 (dd, $1, J=8.3,1.5$), 7.49 ($\mathrm{t}, 1, J=8.3$), 5.89 (ddt, $1, J=17.1,9.1,7.2$), $5.16(\mathrm{t}, 1, J=7.2$), 5.08 (ddt, 1, $J=17.1,2.1,7.2$), 5.02 (ddt, $1, J=9.1,2.1,1.0$), 2.27 (dt (apparent q), $2, J=7.2,7.5$), 2.15 (dddt, $2, J=7.2,1.5,1.0$, 7.5), 1.57 (tt (apparent quintet), $2, J=7.5,7.5$), 1.04 (s, 9), -0.05 (s, 6); ${ }^{13} \mathrm{C}$ NMR 149.8, 140.2, 139.2, 128.2, 127.7, 126.2, 114.8, 111.9 , $34.0,29.3,26.2,26.1,18.7,-4.0$; IR (neat) $3080,3060,2950,2930$, $2860,1675,1645,1603,1580,745,685$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OSi}:$ C, $75.43 ; \mathrm{H}, 10.00$. Found: C, 75.25 ; H, 9.97 .
Partial data for (E)-13 were obtained from mixture: ${ }^{1} \mathrm{H}$ NMR 5.82 (m, 2), $5.07(\mathrm{t}, 1, J=7.2$), 5.01 (ddt, $1, J=17.1,2.1,7.2$), 4.95 (ddt, $1, J=9.1,2.1,1.0$), 2.27 (dt (apparent q), $2, J=7.2$, 7.5), 2.08 (dddt, $2, J=7.2,1.5,1.0,7.5$), 1.52 (tt (apparent quintet),
$1, J=7.5,7.5), 0.97(\mathrm{~s}, 9), 0.03(\mathrm{~s}, 6)$.
Reaction of (Z)-13 with Cupric Triflate. A solution of (Z)-13 ($162 \mathrm{mg}, 0.536 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 8 h using a syringe pump to a solution of cupric triflate (390 $\mathrm{mg}, 1.078 \mathrm{mmol}$) and cuprous oxide ($260 \mathrm{~g}, 1.82 \mathrm{mmol}$) in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for an additional 0.5 h and worked up as described above to give 300 mg of crude product. Purification by flash chromatography on silica gel ($9: 1$ hexane-EtOAc) gave 11.7 mg of a $2: 1$ mixture of (3-cyclohexen-1-yl)phenylmethanone (16) and 12 and 17.4 mg of a 7:9:4:2 mixture of $16,6,7,8,9$-tetrahydro-5,9-methanobenzo-cyclooctene-10($5 H$)-one (19), 12, and 1-cyclohexen-1-ylphenylmethanone (14).
The data for 16: ${ }^{1} \mathrm{H}$ NMR 7.97 (dddd, $2, J=8.1,1.4,1.3,1.0$), 7.57 (dddd, $1, J=7.3,7.3,1.4,1.4$), 7.47 (dddd, $2, J=8.1,7.3$, $2.0,1.3$), 5.76 (br s, 2), 3.54 (dddd, $1, J=11.5,10.3,5.2,2.7$), 2.28-2.45 (m, 1), 1.90-2.05 (m, 1), 1.65-1.90 (m, 1); ${ }^{13} \mathrm{C}$ NMR 203.4, $136.2,132.9,128.6,128.3,126.6,125.7,41.5,27.9,25.7,24.9$; IR (neat) 3030, 2940, 2850, 1690, 1603, 1587, 695. The data are identical to those previously described. ${ }^{24}$
The data for 19: ${ }^{1} \mathrm{H}$ NMR 8.02-8.06 (m, 1), 7.47-7.54 (m, 1), $7.22-7.38(\mathrm{~m}, 2), 3.17(\mathrm{~m}, 1), 2.74(\mathrm{~m}, 1), 2.37$ (br d, $1, J=12.7$), $2.00(\mathrm{dt}, 1, J=12.7,4.8), 1.82-1.95(\mathrm{~m}, 1), 1.67-1.82(\mathrm{~m}, 1)$, $1.38-1.82(\mathrm{~m}, 1), 1.10-1.38(\mathrm{~m}, 2), 0.77-0.93(\mathrm{~m}, 1)$. These data are identical to those previously described. ${ }^{25}$

The structure of 14 was assigned by comparison with an authentic sample prepared by the AgSbF_{6}-induced reaction of benzoyl chloride with cyclohexene. ${ }^{24,26}$

Reaction of (Z)-13 with CAN. A solution of (Z) -13 (500 mg , 1.65 mmol) in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 8 h using a syringe pump to a solution of CAN $(2.00 \mathrm{~g}, 3.65 \mathrm{mmol})$ and sodium bicarbonate ($500 \mathrm{mg}, 5.95 \mathrm{mmol}$) in 15 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for additional 3 h and worked up as described above to give 380 mg of crude product. Purification by flash chromatography on silica gel (9:1 hexaneEtOAc) gave 74.5 mg of a $26.4: 1: 1$ mixture of 16,12 , and 2 -cyclohexen-1-ylphenylmethanone (15); 16.1 mg of a $20: 2: 1$ mixture of 16,12 , and $15 ; 5.7 \mathrm{mg}$ of a $5: 1$ mixture of 16 and $15 ; 9.8 \mathrm{mg}$ of a $3: 1$ mixture of trans-[3-(nitrooxy)cyclohexyl]phenylmethanone (18) and $19 ; 43.2 \mathrm{mg}$ of a $10: 1$:trace mixture of 18,19 , and the acyclic α-nitrooxy ketone; 43.6 mg of $18 ; 67.6 \mathrm{mg}$ of a $1: 1$ mixture of 18 and cis-[3-(nitrooxy)cyclohexyl]phenylmethanone (17); and 32.0 mg of 17 .

The data for $15:{ }^{1} \mathrm{H}$ NMR (7.96 (dddd, $2, J=7.1,1.5,1.5,1.3$), 7.56 (dddd, $1, J=7.2,7.2,1.8,1.3$), 7.47 (dddd, $2, J=7.2,7.1$, $1.5,1.3$), 5.93 (m, 1), 5.73 (ddd, $1, J=10.2,4.2,1.1$), 4.09 (m, 1), 1.50-2.20 (m, 6); ${ }^{13} \mathrm{C}$ NMR 201.8, 136.2, 133.2, 130.5, 129.0, 128.9, $125.1,44.3,26.2,25.2,21.3$; IR (neat) $3060,3030,2930,2860,1680$, 1600,1580 . The spectral data were identical with those of an authentic sample prepared by the AgSbF_{6}-induced reaction of benzoyl chloride with cyclohexene. ${ }^{26}$

The data for 18: ${ }^{1} \mathrm{H}$ NMR 7.95 (dddd, $2, J=8.0,1.9,1.3,0.6$), 7.58 (apparent tt, $1, J=7.3,1.3$), 7.48 (dddd, $2, J=8.0,7.3,0.8$, 0.6), 5.45 (dddd, $1, J=3.1,3.1,3.1,3.1$), 3.69 (dddd, $1, J=11.0$, $11.0,3.9,3.9), 1.80-2.40(\mathrm{~m}, 4), 1.30-1.90(\mathrm{~m}, 4) ;{ }^{13} \mathrm{C}$ NMR 202.2, $135.5,133.5,128.8,128.3,79.4,39.9,30.7,28.8,28.2,20.2$; \mathbb{R} (neat) $3070,2970,2880,1690,1630,1603,1587,1278,695$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$: $\mathrm{C}, 62.64 ; \mathrm{H}, 6.07$. Found: $\mathrm{C}, 62.37 ; \mathrm{H}, 5.97$.

The data for 17: ${ }^{1} \mathrm{H}$ NMR 7.94 (dddd, $2, J=8.0,1.9,1.3,0.6$), 7.59 (apparent tt, $1, J=7.3,1.3$), 7.49 (dddd, $2, J=8.0,7.3,0.8$, 0.6), 5.06 (dddd, $1, J=11.2,11.2,4.2,4.2$), 3.45 (dddd, $1, J=12.0$, $12.0,3.4,3.4$), 2.28 (br d, $1, J=12.4$), 2.19 (br d, $1, J=11.9$), 2.04 (dddd (apparent dq), $1, J=12.9,3.4$), 1.96 (br d, $1, J=13.3$), 1.72 (ddd (apparent q), 1, $J=12.4,12.0,11.2$), 1.59 (ddddd (apparent qt), $1, J=12.7,3.2$), 1.47 (dddd (apparent td), $1, J=$ 11.7, 3.2), 1.38 (dddd (apparent td), $1, J=12.7,3.5$); ${ }^{13} \mathrm{C}$ NMR $200.8,135.6,133.3,128.8,128.2,82.0,43.6,32.1,29.5,28.6,23.6 ;$ IR (neat) $3070,2970,2880,1690,1630,1603,1587,1278,695$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 62.64 ; \mathrm{H}, 6.07$. Found: $\mathrm{C}, 62.80 ; \mathrm{H}, 6.20$.

Synthesis of (1,1-Dimethylethyl)dimethyl[(2,2,5,9-tetra-methyl-3(Z),8-decadienyl)oxy]silane (21a). Ketone 20 (3.66 $\mathrm{g}, 17.4 \mathrm{mmol}$) was converted to $4.63 \mathrm{~g}(82 \%)$) an inseparable 10:1 mixture of (Z) - and (E)-21a as described in method $\mathrm{A}:{ }^{1} \mathrm{H}$ NMR 5.10 (tqq, $1, J=7.2,1.4,1.2$), 4.26 ($\mathrm{d}, 1, J=9.9$), 2.36-2.52 (m, 1), 1.88-1.99 (br dt, 2, $J=7.5,7.2$), 1.67 (br s, 3), 1.59 (br s, 3), 1.11-1.34 (m, 2), 1.14 (s, 9, (E)-21a), 1.05 (s, 9), 0.96 (s, 9), 0.89
(d, $3, J=6.6$), $0.18(\mathrm{~s}, 3), 0.16(\mathrm{~s}, 3), 0.15(\mathrm{~s}, 3,(E)-21 \mathrm{~s}), 0.13(\mathrm{~s}$, 3, (E)-21a); ${ }^{13} \mathrm{C}$ NMR $156.4,130.9,125.2,110.2,38.3,36.4,29.1$, $29.0,26.5,25.9,25.7,21.3,19.3,17.6,-2.9,-3.3$; IR (neat) 2975, 2940, 2885, 1668.

Reaction of 21a with CAN. A solution of 21a ($423 \mathrm{mg}, 1.30$ mmol) in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 3.5 h using a syringe pump to a solution of CAN $(2.00 \mathrm{~g}, 3.65 \mathrm{mmol})$ and sodium bicarbonate ($12.5 \mathrm{~g}, 14.9 \mathrm{mmol}$) in 15 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for additional 3.5 h and worked up as described above to give 350 mg of crude product. Purification by flash chromatography on silica gel (9:1 hexane-ether) gave 117.3 mg (40%) of an inseparable $1: 1$ mixture of 20 and 2,2-di-methyl-1-[(1 $\alpha, 2 \beta, 5 \beta)-2$-methyl-5-(1-methylethenyl) cyclo-pentyl]-1-propanone (22) and $5 \mathrm{mg}(1.8 \%)$ of trans-2,2-di-methyl-1-[2-methyl-5-(1-methylethylidene)cyclopentyl]-1propanone (23).

Pure 22 was obtained by preparative GC ($10-\mathrm{ft} . \times{ }^{3} / \mathrm{s}$-in. 20% carbowax 20 M on Chromosorb PNAW, $150^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR 4.71 (dd, $1, J=1.5,0.6), 4.66(\mathrm{dq}, 1, J=4.7,1.4), 2.80-2.91(\mathrm{~m}, 2)$, 2.18 (dddq, $1, J=7.3,7.3,7.3,6.8$), 1.77-1.97 (m, 2), 1.71 (dd, $3, J=1.4,0.7), 1.57-1.70(\mathrm{~m}, 1), 1.27-1.41(\mathrm{~m}, 1), 1.08(\mathrm{~s}, 9), 1.00$ (d, $3, J=6.8$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 4.81$ (dd, $1, J=1.5,0.6$), 4.70 (dq, $1, J=5.0,1.4$), 3.09 (ddd, $1, J=8.6,8.2,8.2$), 2.77 (dd, $1, J=$ 8.6.7.3), 2.31 (dddq, $1, J=7.3,7.3,7.3,6.8$), $1.76-1.92$ (m, 2), 1.60 (dd, $3, J=1.4,0.7$), 1.48-1.59 (m, 1), 1.14-1.29 (m, 1), 1.07 (s, 9), 0.90 (d, $3, J=6.8$); ${ }^{13} \mathrm{C}$ NMR (carbonyl peak not seen), 146.7, 111.3, 57.2, 54.4, 44.0, 41.4, 34.5, 30.5, 26.0, 20.1, 19.4. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 80.71 ; \mathrm{H}, 11.61$. Found: C, 80.54; H, 11.88 .

The data for 23: ${ }^{\text {'H }} \mathrm{H}$ NMR 3.59 (br s, 1), 2.24-2.48 (m, 2), $2.10-2.20(\mathrm{~m}, 1), 1.97(\mathrm{~m}, 1), 1.66$ (br s, 3), 1.54 (br s, 3), 1.22 (s, $9), 1.00(\mathrm{~d}, 3, J=6.8), 1.00-1.50(\mathrm{~m}, 1)$.

Synthesis of (1,1,2-Trimethylpropyl)dimethyl[(2,2,5,9-tetramethyl-3(Z),8-decadienyl)oxy]silane (21b). Ketone 20 $(2.0 \mathrm{~g}, 9.51 \mathrm{mmol})$ was converted to $2.94 \mathrm{~g}(90 \%)$ of an inseparable 4:1 mixture of (Z) - and (E)-21b as described in method A using dimethylthexylsilyl triflate instead of tert-butyldimethylsilyl triflate: ${ }^{27}{ }^{1} \mathrm{H}$ NMR 5.11 (tqq, $1, J=7.2,1.4,1.2$), 4.26 (d, $1, J$ $=9.9$), 4.24 (d, 1, $J=9.9(E)-21 \mathrm{~b}), 2.37-2.53(\mathrm{~m}, 1), 1.88-1.99$ (br $\mathrm{dt}, 2, J=7.5,7.2$), 1.76 (septet, $1, J=7.0$), 1.67 (br d, $3, J=1.1$), 1.58 (br s), 1.11-1.34 (m, 2), 1.13 (s, 9, (E)-21b), 1.05 (s, 9), 0.78-0.95 $\left(4 \mathrm{CH}_{3}\right), 0.20(\mathrm{~s}, 3), 0.19$ (s, 3, (E)-21b), 0.18 (s, 3), 0.17 (s, 3, (E)h21b); ${ }^{13} \mathrm{C}$ NMR $[(Z)-21 \mathrm{~b}] 156.3,130.9,125.2,110.4,38.3,36.3$, $33.7,29.1,26.0,25.9,25.7,21.3,20.7,20.5,20.1,18.6,18.4,18.3$, $-1.3,-1.5$.

Reaction of 21 b with CAN. To a solution of CAN (920 mg , $1.68 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(6.0 \mathrm{~g}, 71.4 \mathrm{mmol})$ in 9 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added a solution of $21 \mathrm{~b}(250 \mathrm{mg}, 0.734 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at rt overnight, diluted with 70 mL of water, extracted with petroleum ether ($3 \times 25 \mathrm{~mL}$), washed with sodium bicarbonate solution, dired $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo at -5 to $-10^{\circ} \mathrm{C}$ to give 198 mg of crude 22 , which was purified by flash chromatography on silica gel ($9: 1$ pentane-ether) to give 63.4 mg of a $1: 3$ mixture of 20 (14%) and 22 (42\%).

Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-2-(2-propenyl)-1,6-heptadienyl)oxy]silane (34a). To a solution of $33 \mathrm{a}(400 \mathrm{mg}, 1.75 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{~mL}, 3.66 \mathrm{mmol})$ in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TBDMSOTf ($0.42 \mathrm{~mL}, 1.83 \mathrm{mmol}$), and the solution was stirred overnight. An additional 0.2 mL of TBDMSOTf was added. The resulting solution was stirred for 2 h and heated at reflux for 1 h . Normal workup and purification by flash chromatography on silica gel (hexane) gave 200 mg (33%) of an inseparable 5:4 mixture of (Z)- and (E) - 34 a and 200 mg (50%) of recovered 33a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.20-7.36(\mathrm{~m}, 5)$, $5.60-5.96$ (m, 2), 4.81-5.15 (m, 4), 3.02 (br d, 2, $J=6.7$, major isomer), 2.61 (br d, $2, J=6.1$, minor isomer), 2.21 (m, 1), 2.09 $(\mathrm{m}, 1), 1.90(\mathrm{~m}, 2), 1.55(\mathrm{~m}, 1), 1.45(\mathrm{~m}, 1), 0.92(\mathrm{~s}, 9$, minor isomer), 0.90 ($\mathrm{s}, 9$, major isomer), -0.25 ($\mathrm{s}, 6$, major isomer), -2.06 ($\mathrm{s}, 6$, minor isomer); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) 139.2, 138.9, 137.7, 137.0, 129.4, $129.0,127.8,127.7,127.5,127.4,118.0,115.0,114.20,114.17,35.2$, $34.1,33.6,33.0,29.8,28.3,28.0,27.1,25.8,25.7,-2.9,-4.0$.

Reaction of 34 a with CAN. A solution of $34 a(100 \mathrm{mg}, 0.292$ mmol) in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added at rt over 15 min to a solution of CAN ($350 \mathrm{mg}, 0.638 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(100 \mathrm{mg}, 1.190 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The resulting solution was stirred at rt for 3 h , diluted with 30 mL of ether, and washed with saturated
$\mathrm{NaHCO}{ }_{3}$ solution. The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give 61 mg of a $4.2: 1$ mixture of 36 a and 38a. Flash chromatography on silica gel (20:1 hexane-EtOAc) gave 48 mg of an inseparable $4.2: 1$ mixture of 1 -phenyl-2-(2-propenylidene)-6-hepten-1-one (36a) and 6,7,8,9-tetrahydro-9-(2-propenyl)-5,9-methanobenzocyclooctene-10(5 H)-one (38a).

The data for $36 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR 7.66 (dd, $2, J=8.0,1.5$), 7.52 (tt , $1, J=7.0,1.5$), 7.43 (ddd, $2, J=8.0,7.0,1.5$), 6.78 (m, 1), 6.64 (d, 1, $J=11.2$), 5.83 (ddt, 1, $J=17.1,9.1,7.2$), $5.20-5.52$ (m, 2), 5.04 (ddt, $1, J=17.1,2.1,7.2$), 4.96 (ddt, $1, J=9.1,2.1,1.0$), 2.60 (m, 2), $2.10(\mathrm{~m}, 2), 1.59(\mathrm{~m}, 2) ;{ }^{13} \mathrm{C}$ NMR 198.7, 141.5, 141.1, 138.6, 138.2, 132.2, 131.6 129.2, 128.1, 124.6, 114.9, 33.6, 28.5, 26.5.

The data for 38a: ${ }^{1} \mathrm{H}$ NMR $8.02-8.06(\mathrm{~m}, 1), 7.43-7.54(\mathrm{~m}, 1)$, 7.17-7.45 (m, 2), 5.72 (m, 1), 4.90-5.10 (m, 2), 3.22 (m, 1), 2.67 (br dd, 1, $J=13.5,6.6$), 2.29 (br d, 1, $J=13.0$), 2.10 (br dd, 1, $J=13.5,7.9), 1.70(\mathrm{dd}, 1, J=13.0), 1.00-1.90(\mathrm{~m}, 6)$. The benzylic H at $\delta 3.22$ is coupled to the peaks of the bridging methylene group at $\delta 2.29$ and 1.70 .

Synthesis of (Dimethylethyl)dimethyl[(1-phenyl-2-(2-propenyl)-1,6(Z)-nonadienyl)oxy]silane (34b). Ketone 33b (377 mg) was converted to $256 \mathrm{mg}(47 \%)$ of 34 b and $200 \mathrm{mg}(53 \%)$ of recovered 33 b as described above for the preparation of 34a: ${ }^{1} \mathrm{H}$ NMR 7.20-7.35 (m, 5), 5.72-5.95 (m, 1), 5.15-5.44 (m, 2), $4.95-5.15$ (m, 2), 3.02 (br d, $1, J=6.7$, major isomer), 2.67 (br $\mathrm{d}, 1, J=6.1$, minor isomer), $1.80-2.27(\mathrm{~m}, 4), 1.25-1.68(\mathrm{~m}, 2)$, $0.92(\mathrm{~s}, 9$, minor isomer), $0.90(\mathrm{~s}, 9$, major isomer), $0.85-1.00$ (t , $3, \mathrm{CH}_{3}$), -0.25 ($\mathrm{s}, 6$, minor isomer), -0.26 ($\mathrm{s}, 6$, major isomer).

Reaction of 34b with CAN. A solution of 34 b ($87.5 \mathrm{mg}, 0.236$ mmol) in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added at rt over 10 min to a solution of CAN ($280 \mathrm{mg}, 0.511 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(80 \mathrm{mg}, 0.952 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$, and the reaction mixture was stirred at rt for 3 h . Normal work-up and flash chromatography on silica gel (20:1 hexane-EtOAc) gave 18.6 mg (31%) of 1-phenyl-2-(2-propenylidene)-6(Z)-nonen-1-one (36b): ${ }^{1} \mathrm{H}$ NMR 7.66 (dd, 2, J $=8.0,1.5$), 7.52 (tt, $1, J=7.01 .5$), 7.43 (ddd, $2, J=8.0,7.0,1.5$), $6.79(\mathrm{~m}, 1), 6.63(\mathrm{~d}, 1, J=11.1), 5.27-5.55(\mathrm{~m}, 4), 2.61(\mathrm{~m}, 2)$, $1.90-2.20(\mathrm{~m}, 4), 1.54(\mathrm{~m}, 2), 0.96(\mathrm{t}, 1, J=7.6) ;{ }^{13} \mathrm{C}$ NMR 198.8, 141.3, 132.3, 132.2, 131.6, 129.3, 128.4, 128.1, 124.6, 29.4, 27.1, 26.7, 20.6, 14.3, 2 C not observed; IR (neat) $3060,2960,2880,1725,1660$, 1600, 1580.

Synthesis of (1,1-Dimethylethyl)dimethyl((1-phenyl-1-(Z),6(Z),11-dodecatrienyl)oxy]silane (43). Ketone 42 (260 mg , 1.01 mmol) was converted to 360 mg (99%) of an inseparable $5: 1$ mixture of (Z)- and (E)-43 as described in method A: ${ }^{1} \mathrm{H}$ NMR 7.42 (dd, $2, J=8.1,1.4$), $7.15-7.38$ (m, 3), 5.80 (ddt, $1, J=17.2$, $10.0,6.7$), $5.28-5.47$ (m, 2), $5.10(\mathrm{t}, 1, J=7.2$), 5.00 (ddt, $1, J=$ $17.2,2.1,1.6$), 4.93 (ddt, $1, J=10.0,2.1,1.2$), 2.14-2.16 (m, 2), $1.94-2.14(\mathrm{~m}, 6), 1.33-1.56(\mathrm{~m}, 4), 0.99(\mathrm{~s}, 9), 0.91$ (s, 9, (E)-43), 0.03 (s, 6, (E)-43), $-0.05(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR [(Z)-43] 149.4, 140.0, 138.5, $130.0,129.7,128.0,127.5,126.0,114.5,111.9,33.5,30.0,29.0,27.5$, $27.0,26.1,26.0,25.9,-4.0$; IR (neat) $3070,2930,2860,1655,1645$, 1600, 1580, 745, 685.

Reaction of 43 with Cupric Triflate. A solution of a 5:1 mixture of (Z)- and (E)-43 ($110 \mathrm{mg}, 0.303 \mathrm{mmol}$) in 2.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 3 h using a syringe pump to a solution of cupric triflate ($360 \mathrm{mg}, 0.995 \mathrm{mmol}$) and $\mathrm{Cu}_{2} \mathrm{O}$ (250 $\mathrm{mg}, 1.75 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for additional 3.5 h and worked up as described above to give 94.1 mg of crude product, which was purified by flash chromatography on silica gel ($9: 1$ hexane-EtOAc) to give $66 \mathrm{mg}(80 \%)$ of a $4: 1$ mixture of ($3 \mathrm{a} \alpha, 9 \beta, 9 \mathrm{a} \beta$)-9-(4-pentenyl)-1,2,3,3a,9,9a-hexahydro-4H-benz[f]inden-4-one (44) and (3a $\alpha, 9 \alpha, 9 \mathrm{a} \alpha$)-9-(4-pentenyl)-1,2,3,3a, $9,9 \mathrm{a}$-hexahydro- 4 H -benz[f]-inden-4-one (45): ${ }^{1} \mathrm{H}$ NMR 8.03 (ddd, $1, J=7.9,7.3,1.4$), 7.90 (ddd, $1, J=7.9,9.3,1.4,45$), 7.52 (ddd, $1, J=7.9,7.3,1.4$), 7.42 (br d, 1, $J=7.9$), 7.31 (ddd, $1, J=7.7,7.3,1.6$), 5.77 (ddt, $1, J$ $=17.2,10.0,6.7), 5.00(\mathrm{ddt}, 1, J=17.2,2.1,1.6), 4.92(\mathrm{ddt}, 1, J$ $=10.0,2.1,1.2$), 2.96 (ddd, 1, $J=10.7,3.8,3.8$), 2.51 (ddd, 1, J $=13.3,9.8,8.0$), $0.90-2.35(\mathrm{~m}, 13)$; ${ }^{13} \mathrm{C}$ NMR (44) 200.3, 146.6 , 138.4, 134.6, 133.1, 127.3, 126.7, 126.2, 114.8, 55.1, 47.4, 45.1, 34.2, $30.8,30.1,23.8,23.3,22.2$; IR (neat) $3035,2970,2940,1690,1645$, 1600, 760, 690. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.99 ; \mathrm{H}, 8.72$. Found: C, 84.76; H, 8.89 .

Synthesis of (1,1-Dimethylethyl)dimethyl[(1-phenyl-1(Z)-hepten-6-ynyl)oxy]silane (56). Ketone $55^{41}(0.373 \mathrm{~g}, 2.00$ $\mathrm{mmol})$ was converted to $0.50 \mathrm{~g}(83 \%)$ of an inseparable $8: 1$ mixture
of (Z) - and (E) - 56 as described in method A: ${ }^{1} \mathrm{H}$ NMR 7.42 (dd, $2, J=8.1,1.4), 7.18-7.32(\mathrm{~m}, 3), 5.07(\mathrm{t}, 1, J=7.2), 5.05(\mathrm{t}, 1$, $J=7.2,(E)-56), 2.26-2.36(\mathrm{~m}, 2), 2.24(\mathrm{dt}, 2, J=2.7,7.2), 1.95$ ($\mathrm{t}, 1, J=2.7$), $1.66(\mathrm{t}, 1, J=7.2,(E)-56), 1.66(\mathrm{tt}, 2, J=7.2,7.2$), $0.99(\mathrm{~s}, 9), 0.91(\mathrm{~s}, 9,(E)-56), 0.03(\mathrm{~s}, 6,(E)-56),-0.05(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR [(Z)-56] 150.0, 139.6, 127.9, 127.4, 125.9, 110.5, 84.5, 68.3, 28.6, 25.9, 25.7, 25.3, 18.2, -4.0; IR (neat) 3300, 3030, 2970, 1655, $1600,1575,750,690$.

Reaction of 56 with CAN. A solution of 56 ($100 \mathrm{mg}, 0.33$ mmol) in 2.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 3 h using a syringe pump to a solution of CAN ($380 \mathrm{mg}, 0.69 \mathrm{mmol}$) and sodium bicarbonate ($120 \mathrm{mg}, 1.43 \mathrm{mmol}$) in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for additional 3.5 h and worked up as described above to give 320 mg of crude product. Purification by flash chromatography on silica gel ($9: 1$ hexaneether) gave 4.1 mg of recovered $56,12.4 \mathrm{mg}$ of $\mathbf{1 5}(18 \%)$, and 23.4 mg (38%) of acyclic α-nitrooxy ketone 58.
The data for 58: ${ }^{1} \mathrm{H}$ NMR 7.95 (dddd, $2, J=8.1,1.4,1.3,1.0$), 7.63 (dddd, $1, J=7.3,7.3,1.4,1.4$), 7.55 (dddd, $2, J=6.7,1.5$, 1.2, 7.4), 6.10 (dd, $1, J=9.0,3.7$), 2.30 (dt, $2, J=2.3,7.2$), 2.11-2.25 (m, 1), 1.95-2.08 (m, 1), 1.97 (d, 1, $J=2.3$), 1.75 ($\mathrm{tt}, 2, J=7.2$, 7.2); ${ }^{13} \mathrm{C}$ NMR 193.9, 134.3, 133.7, 129.1, 128.4, 82.7, 82.0, 69.7, 28.5, 23.4, 14.7; IR (neat) 3305, 3030, 2970, 2930, 1690, 1603, 1585, 1255, 770, 690.

Synthesis of (1,1-Dimethylethyl)dimethyl((1-phenyl-1(Z)-octen-6-ynyl)oxy]silane (60). Ketone 59 ($0.384 \mathrm{~g}, 1.92$ mmol) was converted to $0.54 \mathrm{~g}(90 \%)$ of an 8:1 mixture of (Z)and (E)-60 as described in method A: ${ }^{1} \mathrm{H}$ NMR 7.43 (dd, 2, $J=$ 8.1, 1.4), 7.18-7.32 (m, 3), $5.09(\mathrm{t}, 1, J=7.2), 5.01(\mathrm{t}, 1, J=7.2$, (E)-60), 2.23-2.33 (m, 2), 1.78 (t, 3, $J=2.6$), 1.74 ($\mathrm{t}, 3, J=2.6$, (E)-60), 1.50-1.66 (m, 2), 0.99 (s, 9), 0.91 (s, 9, (E)-60), 0.03 (s, $6,(E)-60),-0.05(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) [(Z)-60] 149.8, 139.7, 127.7, 127.4, 125.9, 111.0, 79.2, 75.6, 29.1, 25.9, 25.7, 25.5, 8.6, -4.0; IR (neat) 3060, 2940, 2880, 2240, 1655, 1580, 750, 690.

Reaction of 60 with Cupric Triflate. A solution of an $8: 1$ mixture of (Z)- and (E)-60 ($65 \mathrm{mg}, 0.21 \mathrm{mmol}$) in 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added over 3 h using a syringe pump to a solution of cupric triflate ($470 \mathrm{mg}, 1.30 \mathrm{mmol}$), water ($10 \mu \mathrm{l}, 0.56 \mathrm{mmol}$), and $\mathrm{Cu}_{2} \mathrm{O}$ ($280 \mathrm{mg}, 1.96 \mathrm{mmol}$) in 6 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for an additional 3.5 h and worked up as described above to give 64.7 mg of crude 64 , which was washed with hexane to give $30 \mathrm{mg}(70 \%)$ of pure $1,2,3,9$-tetra-hydro- 9 -hydroxy- 9 -methyl-4 H -benz[f]inden-4-one (64): mp $175-177^{\circ} \mathrm{C}$ (hexane-EtOAc); ${ }^{1} \mathrm{H}$ NMR 8.05 (dd, $1, J=7.8,1.4$), 7.80 (dd, $1, J=8.0,1.4$), 7.59 (ddd, $1, J=8.0,7.8,1.4$), 7.40 (ddd, $1, J=7.8,7.8,1.4), 2.52-3.02(\mathrm{~m}, 4), 1.85-2.15(\mathrm{~m}, 2), 1.63(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR 183.0, 165.8, 149.1, 136.7, 132.6, 130.4, 127.8, 126.3, 126.0, 69.1, 32.7, 29.9, 29.5, 21.6; IR (neat) 3440, 3070, 2970, 2940, 1640, 1600,1585 . Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.48 ; \mathrm{H}, 6.59$. Found: C, 78.13; H, 6.71.

Synthesis of ($1 Z, 6 Z$) - and ($1 E, 6 Z$)-1-Methoxy-1-phenyl1,6 -nonadiene (65). Montmorillonite K10 clay (3.0 g) in 4 mL of trimethyl orthoformate was stirred for 5 min and filtered to give wet clay. ${ }^{45}$ To the wet clay was added a solution of ketone $1 \mathrm{a}(639 \mathrm{mg}, 2.94 \mathrm{mmol})$ in 10 mL of pentane, and the reaction mixture was stirred for 16 h . The solution was filtered and the wet clay was washed with 10 mL of pentane. The combined pentane layers were evaporated in vacuo to give 761 mg (99%) of the dimethyl ketal. To a solution of the ketal ($600 \mathrm{mg}, 2.29$ mmol) and $i-\mathrm{Pr}_{2} \mathrm{NEt}\left(0.6 \mathrm{~mL}, 3.44 \mathrm{~mL}\right.$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -25 ${ }^{\circ} \mathrm{C}$ was added TMSOTf ($0.6 \mathrm{~mL}, 3.10 \mathrm{mmol}$) dropwise. ${ }^{46}$ The reaction mixture was warmed to rt and stirred for 22 h . The solvent was evaporated, and the residue was washed with petroleum ether $(3 \times 7 \mathrm{~mL})$. The combined petroleum ether solution was washed with cold saturated NaHCO_{3} solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 444 mg of crude 65 , which was purified by flash chromatography on silica gel (hexane) to give 72 mg of a $1: 1$ mixture of (Z) - and (E) - 65 and 444 mg of a $1: 2$ mixture of (Z) - and (E)-65 (combined yield 56%). Careful flash chromatography on silica gel (hexane) gave a least polar fraction containing an 8:1 mixture of (Z) - and (E)-65. Replacement of $i-\mathrm{Pr}_{2} \mathrm{NEt}$ by $\mathrm{Et}_{3} \mathrm{~N}$ gave a 1:4.2 mixture of (Z) - and (E)-65. Flash chromatography on silica gel ($60: 1$ hexane-ether) gave a most polar fraction containing a $1: 10$ mixture of (Z) - and (E)-65.

The data for (Z)-65: ${ }^{1} \mathrm{H}$ NMR 7.46 (dd, $2, J=8.1,1.4$), $7.22-7.42$ ($\mathrm{m}, 3$), $5.30-5.50(\mathrm{~m}, 2), 5.32(\mathrm{t}, 1, J=7.4), 3.53(\mathrm{~s}, 3), 2.30(\mathrm{~m}$,
2), $1.90-2.20(\mathrm{~m}, 4), 1.50(\mathrm{tt}, 2, J=6.0,6.0), 0.98(\mathrm{t}, 3, J=7.6)$; ${ }^{13}$ C NMR 154.7, 131.9, 128.8, 128.3, 127.6, 127.1, 125.8, 114.5, 58.5, 29.9, 26.9, 25.2, 20.5, 14.3.

The data for (E)-65: ${ }^{1} \mathrm{H}$ NMR 7.60 (dd, $2, J=8.1,1.4$), 7.25-7.50 (m, 3), 5.20-5.45 (m, 2), 4.72 (t, 1, J = 7.4), 3.63 (s, 3), $1.90-2.15(\mathrm{~m}, 6), 1.50(\mathrm{tt}, 2, J=6.0,6.0), 0.93(\mathrm{~s}, 3, J=7.6) ;{ }^{13} \mathrm{C}$ NMR 155.3, 136.5, 131.8, 128.9, 128.6, 127.93, 127.90, 100.2, 55.0, $31.3,27.1,26.7,20.5,14.3$; IR (neat) $3030,2980,2965,2930,1650$, 1600, 760.
The stereochemistry is assigned by comparison to the ${ }^{13} \mathrm{C}$ NMR data for the methyl enol ethers of propiophenone ${ }^{65}$ and the ${ }^{1} \mathrm{H}$ NMR data for the methyl enol ethers of valerophenone. ${ }^{66}$ The methoxy carbon (58.5 vs 55.0) and carbon-2 (114.5 vs 100.2) absorb downfield in the Z-isomer. The methoxy hydrogens absorb downfield (3.63 vs 3.53) while hydrogen-2 absorbs upfield (4.72 vs 5.32) in the E-isomer.

Reaction of 65 with Cupric Triflate. A solution of an $8: 1$ mixture of (Z)- and (E)-65 ($8.8 \mathrm{mg}, 0.038 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was slowly added using a syringe pump to a solution of cupric triflate ($35 \mathrm{mg}, 0.098 \mathrm{mmol}$) and cuprous oxide ($24 \mathrm{mg}, 0.168$ mmol) in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at rt . The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, diluted with 20 mL of ether, acidified with $5 \% \mathrm{HCl}$ solution, washed with saturated NaCl solution, dired (MgSO_{4}), and evaporated in vacuo to give 8.0 mg of crude product which was purified by flash chromatography on silica gel (9:1 hexane-EtOAc) to give 60 mg (73%) of an inseparable $7: 1$ mixture of 5a and 6a. A similar reaction with a 1:10 mixture of (Z)- and (E)-65 ($28 \mathrm{mg}, 0.12 \mathrm{mmol}$) gave $19 \mathrm{mg}(74 \%)$ of an inseparable $1: 7$ mixture of $5 a$ and $6 a$.

Synthesis of Trimethyl[(1-phenyl-2-(3-hexenyl)cyclopropyl)]oxy]silane (74). To a solution of 73 ($996 \mathrm{mg}, 3.63 \mathrm{mmol}$) and ZnEt_{2} (1.1 M in toluene, $3.5 \mathrm{~mL}, 3.85 \mathrm{mmol}$) in 15 mL of pentane was added dropwise $\mathrm{CH}_{2} \mathrm{I}_{2}(0.6 \mathrm{~mL}, 7.44 \mathrm{mmol}){ }^{59}$ The reaction mixture was stirred for 20 h , diluted with 50 mL of pentane, washed with cold saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, dired $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 1.11 g of crude 74 , which was purified by flash chromatography on silica gel (hexane) to give 353 mg (31%) of pure 74 as a mixture of isomers: ${ }^{1} \mathrm{H}$ NMR 7.12-7.37 (m, 5), 5.22-5.58 (m, 2), 1.93-2.33 (m, 4), 1.50-2.80 (m, 3), $1.34-1.38(\mathrm{~m}, 1), 0.97(\mathrm{t}, 1, J=7.6$, major isomer), $0.85-1.03$ ($\mathrm{m}, 1$), 0.76-0.86 (m, 1), $0.09\left(\mathrm{~s}, 9\right.$, major isomer); ${ }^{13} \mathrm{C}$ (major isomer) $145.9,132.0,129.2,128.0,125.8,124.9,60.9,32.5,28.42,28.35,25.6$, 20.6, 13.9, 1.1; IR (neat) 3065, 3030, 2980, 2938, 1605. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28}$ OSi: $\mathrm{C}, 74.94, \mathrm{H}, 9.78$. Found: C, 75.02, 9.71.

Reaction of 74 with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2 \cdot}$ To a solution of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ ($500 \mathrm{mg}, 2.11 \mathrm{mmol}$) and $\mathrm{Cu}_{2} \mathrm{O}(350 \mathrm{mg}, 2.45 \mathrm{mmol})$ in 10 mL of ether was added over 15 min at rt a solution of $74(292 \mathrm{mg}, 1.01$ mmol) in 5 mL of ether. The reaction mixture was stirred for 3.5 h , diluted with ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, washed with saturated NaHCO_{3} solution, dired $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 186 mg of crude 77 , which was purified by flash chromatography on silica gel (hexane-EtOAc, 9:1) to give $46.6 \mathrm{mg}\left(21 \%, \approx 80 \%\right.$ pure) of 77. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral and capillary GC analysis (including co-injections with authentic samples) indicated that a $2.5: 1$ mixture of $(E)-77$ and (Z)-77 (both as $a \approx 1: 1$ cis-trans mixture) was present.

Synthesis of Phenyl[3-(1-propenyl)cyclopent-1-yl]methanone (77). A solution of norbornene ($2.0 \mathrm{~g}, 21.3 \mathrm{mmol}$) in 60 mL of $5: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ buffered with 0.4 g of NaHCO was ozonolyzed at $-78^{\circ} \mathrm{C}\left(\mathrm{O}_{3}\right.$ was bubbled through for about 10 min until the blue color persisted). The solution was purged with N_{2} to remove the remaining O_{3}, filtered, and evaporated in vacuo to give a colorless oil. The residual oil was dissolved in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(6.0 \mathrm{~mL}, 43.0 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(2.5 \mathrm{~g}$,

[^14]24.5 mmol) were added to the solution successively. The reaction mixture was stirred at rt for 2 days and diluted with ether. The ether solution was washed with $5 \% \mathrm{HCl}$ solution, washed with saturated NaCl solution, dired $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give $2.70 \mathrm{~g}(81 \%)$ of a crude $2: 3$ mixture of cis- and trans-78. ${ }^{60}$

To a suspension of ethyltriphenylphosphonium bromide (3.78 $\mathrm{g}, 0.2 \mathrm{mmol}$) in 25 mL of THF was added $n-\mathrm{BuLi}$ (2.5 M in hexane, $5.0 \mathrm{~mL}, 12.5 \mathrm{mmol})$. The reaction mixture was stirred for 10 min and treated with a solution of $78(1.89 \mathrm{~g}, 12.1 \mathrm{mmol})$ in 10 mL of THF. The reaction mixture was heated at $45-50^{\circ} \mathrm{C}$ overnight, and 65 mL of 1 N NaOH solution was added. The reaction mixture was heated at reflux for 0.5 h to hydrolyze the ester, cooled to rt , and washed with petroleum ether ($3 \times 20 \mathrm{~mL}$). The aqueous layer was acidified with $5 \% \mathrm{HCl}$ solution and extracted with ether ($2 \times 30 \mathrm{~mL}$). The ether layers were washed with saturated NaCl solution, dired $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 626 mg (34\%) of 79: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 11.0\left(\mathrm{br}, 1 \mathrm{CO}_{2} \mathrm{H}\right), 5.20-5.55$ (m, 2), $2.70-3.05(\mathrm{~m}, 2), 1.20-2.40(\mathrm{~m}, 6), 1.60-1.66\left(\mathrm{~m}, 2\right.$ allylic $\left.\mathrm{CH}_{3}\right)$.

A solution of $\mathrm{PhLi}(1.8 \mathrm{M}, 5.0 \mathrm{~mL}, 9.0 \mathrm{mmol})$ in $7: 3$ cyclo-hexane-ether was added to a solution of 79 ($626 \mathrm{mg}, 4.06 \mathrm{mmol}$) in 30 mL of ether at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h , acidified with $5 \% \mathrm{HCl}$ solution, washed with saturated NaHCO_{3} solution, dried (MgSO_{4}), and evaporated in vacuo to give 584 mg of crude product which was purified by flash chromatography on silica gel ($20: 1$ hexane-EtOAc) to give $250 \mathrm{mg}(30 \%)$ of a $2: 1$ mixture of $(Z)-77$ and $(E)-77$. (Z)-77 was a $3: 4$ mixture of stereoisomers.
A solution of the above mixture ($100 \mathrm{mg}, 0.047 \mathrm{mmol}$) and p-toluenesulfinic acid (100 mg , obtained from acidification of the commercially available sodium salt) in 10 mL of dioxane was heated at reflux for 3.5 h , cooled to rt , and diluted with 50 mL of ether. ${ }^{47}$ The ether solution was washed with 1 N NaOH solution, washed with saturated NaCl solution, dired $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 120 mg of crude product which was purified by flash chromatography on silica gel ($20: 1$ hexane-EtOAc) to give $95 \mathrm{mg}(95 \%)$ of a $1: 4$ mixture of (Z) - and $(E)-77$, (E)-77 was a $2: 3$ mixture of stereoisomers.

The data for a $3: 4$ mixture of stereoisomers of $(Z)-77:{ }^{1} \mathrm{H}$ NMR 7.96 (dddd, $2, J=7.0,1.5,1.3,1.0$), 7.55 (dddd, $1, J=7.3,7.3$, $1.5,1.3$), 7.46 (dddd, $2, J=7.3,7.0,1.5,1.3$), 5.13-5.60 (m, 2), 3.66-3.92 (m, 1), 2.83-3.03 (m, 1), 1.78-2.25 (m, 4), 1.65 (m, 3, allylic methyl), $1.58-1.78$ (m, 1), 1.36-1.55 (m, 1); ${ }^{13} \mathrm{C}$ NMR 202.4, 202.2, 136.9 (ipso), 136.7 (ipso), 134.5, 134.4, 132.7 (para), 128.4 (ortho, meta), 123.6, 123.3, 46.3, 45.6, 38.7, 37.4, 37.2, 36.7, 34.1, 33.1, 29.4, $29.2,13.1,13.0$; IR (neat) 3030, 2975, 2860, 1683, 1600, 1580.

The data for a $2: 3$ mixture of stereoisomers of $(E)-77:{ }^{1} \mathrm{H}$ NMR 7.96 (dddd, $2, J=7.0,1.5,1.3,1.0$), 7.55 (dddd, $1, J=7.3,7.3$, $1.5,1.3$), 7.46 (dddd, $2, J=7.3,7.0,1.5,1.3$), $5.25-5.65$ (m, 2), 3.66-2.93 (m, 1), 2.47-2.67 (m, 1), 1.78-2.20 (m, 4), 1.65 (m, 3, allylic methyl), $1.58-1.78$ (m, 1), 1.36-1.55 (m, 1); ${ }^{13} \mathrm{C}$ NMR 202.5, 202.3, 137.0 (ipso), 136.8 (ipso), 134.7, 134.6, 132.7 (para), 128.5 (ortho, meta), 123.9, 123.8, 46.2, 45.4, 44.3, 42.6, 37.0, 36.3, 33.6, 32.9, 29.1, $29.0,17.92,17.86$; IR (neat) $3030,2975,2860,1683,1600,1580$.

Capillary GC on Alltech RSL $150\left(60^{\circ} \mathrm{C}\right.$ to $150^{\circ} \mathrm{C}$ at 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}, 150^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 20^{\circ} \mathrm{C} / \min$ to $190^{\circ} \mathrm{C}$, and $190^{\circ} \mathrm{C}$ for 10 min) resolved the four isomers into three peaks: $t_{\mathrm{R}}=14.6$ and 15.1 min for $(Z)-77$ and $t_{\mathrm{R}}=14.9 \mathrm{~min}$ for $(E)-77$.

Acknowledgment. We are grateful to the National Science Foundation (CHE-8721312) and National Institutes of Health for generous financial support.
Supplementary Material Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $33 \mathrm{~b}, 34 \mathrm{~b}, 36 \mathrm{a}, 36 \mathrm{~b}, 42,56,58,59,60,(Z)-65$, (E)-65, and 77 (from 74 and 79) (26 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (9) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 649.
 (10) For a preliminary communication see: Snider, B. B.; Kwon, T. J. Org. Chem. 1990, 55, 4786.
 (11) (a) Shono, T.; Nishiguchi, I.; Kashimura, S.; Okawa, M. Bull. Chem. Soc. Jpn. 1978, 51, 2181 . (b) Moeller, K. D.; Marzabadi, M. R.; Chiang, M. Y.; New, D. G.; Keith, S. J. Am. Chem. Soc. 1990, 112, 6123. (c) Moeller, K. D.; Hudson, C. M. Tetrahedron Lett. 1991, 32, 2307. (d) Hudson, C. M.; Moeller, K. D.; Marzabadi, M. R.; New, D. G. J. Am. Chem. Soc. 1991, 113, 7372.
 (12) (a) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494. (b) Ito, Y.; Aoyama, H.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 4519.
 (13) (a) Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784. (b) Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, 104, 5808. (c) Kende, A. S.; Sanfilippo, P. J. Synth. Commun. 1983, 13, 715. (d) Kende, A. S.; Battista, R. A.; Sandoval, S. B. Tetrahedron Lett. 1984, 25, 1341. (e) Kende, A. S.; Wustrow, D. J. Tetrahedron Lett. 1985, 26, 5411.

[^1]: (14) (a) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953. (b) For a review of silyl triflates, see: Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Götz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krägeloh, K.; Oesterle, T.; Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1. For a review of silyl enol ethers, see: Brownbridge, P. Synthesis 1983, 1 and 85 .
 (15) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. 4soc. 1976, 98, 2868.
 (16) Heathcock, C. H.; Davidsen, S. K.; Hug, K. T.; Flippen, L. A. J. Org. Chem. 1986, 51, 3027.
 (17) (a) Wilson, R. M.; Dietz, J. G.; Shepherd, T. A.; Ho, D. M.; Schnapp, K. A.; Elder, R. C.; Watkins, J. W., II; Geraci, L. S.; Campana, C. F.J.Am. Chem. Soc. 1989, 111, 1749 and references cited therein. (b) Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, R. A., Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H. S.; Kaye Marsh, B. Acc. Chem. Res. 1987, 20, 371.

[^2]: (18) (a) Inaba, S.; Ojima, I. Tetrahedron Lett. 1977, 2009. (b) Wallace, I. H. M.; Chan, T. H. Tetrahedron 1983, 39, 847. (c) All, S. M.; Rousseau, G. Tetrahedron 1990, 46, 7011.
 (19) Citterio, A.; Sebastiano, R.; Nicolini, M.; Santi, R. Synlett. 1990, 42.
 (20) Zhdankin, V. V.; Mullikin, M.; Tykwinski, R.; Berglund, B.; Caple, R.; Zefirov, N. S.; Koz'min, A. S. J. Org. Chem. 1989, 54, 2605 and 2609. (21) Molecular mechanics calculations were carried out with MODEL version KS 2.94 provided by Prof. Kosta Steliou, University of Montreal. (22) Moss, R. J.; White, R. O.; Rickborn, B. J. Org. Chem. 1985, 50, 5132.

[^3]: (23) Lewis, F. D.; Johnson, R. W.; Johnson, D. E. J. Am. Chem. Soc. 1974, 96, 6090.
 (24) (a) Ismailov, A. G.; Rustamov, M. A.; Akhmedov, A. A. J. Org. Chem. USSR. 1975, 11, 2325; Zh. Org. Khim. 1975, 11, 2287. (b) Creary, X.; Rollin, A. J. J. Org. Chem. 1979, 44, 1798.
 (25) (a) Dragutan, I.; Draghici, C.; Cioranescu, E. Rev. Roum. Chim. 1975, 20, 283. (b) Huisgen, R.; Seidl, G. Tetrahedron 1964, 20, 231. (26) Smit, V. A.; Semenovskii, A. V.; Lyubinskaya, O. V.; Kucherov, V. F. Proc. Acad. Sci. USSR, Ser. Chem. 1971, 203, 272; Dokl. Akad. Nauk SSSR 1971, 203, 604.

[^4]: (27) Wetter, H.; Oertle, K. Tetrahedron Lett. 1985, 26, 5515.

[^5]: (28) Curran, D. P.; Chang, T. C. J. Org. Chem. 1989, 54, 3140.
 (29) Cambillau, C.; Charpentier-Morize, M. J. Chem. Soc., Chem Commun. 1982, 211.
 (30) Glazier, E. R. J. Org. Chem. 1962, 27, 4397.
 (31) (a) Khalaf, A. A.; Abdel-Wahab, A.-M.; El-Khawaga, A. M.; ElZohry, M. F. Bull. Soc. Chim. Fr. 1984, II-285. (b) Roberts, R. M.; Khalaf, A. A. Fridel-Crafts Alkylation Chemistry; Marcel Dekker: New York 1984. (c) Olah, G. A. Fridel-Crafts Chemistry; Wiley: New York, 1973.

[^6]: (32) Brown, C. A. J. Org. Chem. 1974, 39, 3913.
 (33) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1965.
 (34) Swartz, M.; Waters, R. M. Synthesis 1972, 567.
 (35) Sargent, M. V.; Wangchareontrakul, S. J. Chem. Soc., Perkin Trans. 1 1989, 1171.
 (36) Morris, S. G.; Magidman, P.; Herb, S. F. J. Am. Oil. Chem. Soc. 1972, 49, 505. Schrauzer, G. N.; Guth, T. D. J. Am. Chem. Soc. 1976, 98, 3508.
 (37) Paquette, L. A.; Meisinger, R. H.; Wingard, R. E., Jr. J. Am. Chem. Soc. 1973, 95, 2230.

[^7]: (38) Balaban, A. T.; Nenitzescu, C. D.; Gavat, M.; Mateescu, G. J. Chem. Soc. 1961, 3564 .
 (39) (a) Giese, B. Radicals in Organic Synthesis: Formation of Car-bon-Carbon Bonds; Pergamon: Oxford, 1986. (b) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925. (c) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron Lett. 1985, 26, 373.
 (40) Beckwith, A. L. J.; Phillipou, G.; Serelis, A. K. Tetrahedron Lett. 1981, 22, 2811.

[^8]: (41) Gautier, J. A.; Miocque, M.; Mascrier-Demagny, L. Bull. Soc. Chim. Fr. 1967, 1551.
 (42) Seyden-Penne, J.; Seuron, N. Tetrahedron 1984, 40, 635.

[^9]: (43) Adam, W.; Lupôn, P. Chem. Ber. 1988, 121, 21.
 (44) (a) Yamada, Y.; Hosaka, K.; Sawahata, T.; Watanabe, Y.; Iguchi, K. Tetrahedron Lett. 1977, 2675. Yamada, Y.; Hosaka, K.; Sanjoh, H.; Suzuki, M. J. Chem. Soc., Chem. Commun. 1974, 66a. McKiilop, A.; Perry, D. H.; Edwards, M.; Antus, H.; Farkas, L.; Nógrádi, M.; Taylor, E. C. J. Org. Chem. 1976, 41, 282. D'Ambrosio, M.; Guerriero, A.; Pietra, F. Helv. Chim. Acta 1984, 67, 1484. (b) Hanson, R. M. Ph.D. Dissertation, Columbia University, New York, NY, 1983. (c) Hara, H.; Hosaka, M.; Hoshino, O.; Umezawa, B. J. Chem. Soc., Perkin Trans. 1 1980, 1169. (d) Sedee, A. G. J.; Beijerbergen van Henegouwen, G. M. J. Tetrahedron Lett. 1983, 24, 5779. (e) Lewis, N.; Wallbank, P. Synthesis 1987, 1103. (f) Forrester, A.; Thomson, R. H.; Woo, S.-O. J. Chem. Soc., Perkin Trans. 1 1975, 2340. (g) Dietl, H.; Young, H. S. J. Org. Chem. 1972, 37, 1672.
 (45) Taylor, E. C.; Chang, C.-S. Synthesis 1977, 467.
 (46) Gassman, P. G.; Burns, S. J. J. Org. Chem. 1988, 53, 5576.

[^10]: (48) Ireland, R. E.; Willard, A. K. Tetrahedron Lett. 1975, 3975.
 (49) Nilsson, A.; Carlson, R. Acta Chem. Scand. 1984, B38, 523.
 (50) House, H. O.; Gall, M.; Olmstead, H. J. Org. Chem. 1971, 36, 2361.
 (51) Ledwith, A. Acc. Chem. Res. 1972, 5, 133.
 (52) Filimonov, V. D.; Anfinogenov, V. A.; Sirotkina, E. E.; Rodionov, V. A. J. Org. Chem. USSR 1980, 16, 2051; Zh. Org. Khim. 1980, 16, 2395 and references cited therein.
 (53) Ryu, I.; Ando, M.; Ogawa, A.; Murai, S.; Sonoda, N. J. Am. Chem. 1983, 105, 7192. For related examples see: Murai, S.; Rye, I.; Sonoda, N. J. Organometal. Chem. 1983, 250, 121. Ryu, I.; Suzuki, H.; Ogawa, A.; Kambe, N.; Sonoda, N. Tetrahedron Lett. 1988, 29, 6137.
 (54) Schaafsma, S. E.; Molenaar, E. J. F.; Steinberg, H.; de Boer, Th. J. Recl. Trav. Chim. Pays-Bas 1968, 87, 1301. Schaafsma, S. E.; Jorritsma, R.; Steinberg, H.; de Boer, Th. J. Tetrahedron Lett. 1973, 827. (55) Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K. Chem. Lett. 1991, 1193.

[^11]: (56) Geise, B.; Horler, H. Tetrahedron 1985, 41, 4025.
 (57) Snider, B. B.; Karras, M.; Price, R. T.; Rodini, D. J. J. Org. Chem. 1982, 47, 4538.
 (58) Yamaguchi, M.; Taniguchi, Y.; Inanaga, J. Bull. Chem. Soc. Jpn. 1981, 54, 3229.
 (59) Ryu, I.; Murai, S.; Sonoda, N. Tetrahedron Lett. 1977, 4611.
 (60) Schreiber, S. L.; Claus, R. E.; Reagan, J. Tetrahedron Lett. 1982, 23, 3867.

[^12]: (61) Bailey, W. F.; Khanolkar, A. D.; Gavaskar, K.; Ovaska, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B. J. Am. Chem. Soc. 1991, 113, 5720 and references cited therein.
 (62) Utimoto, K.; Imi, K.; Shiragami, H.; Fujikura, S.; Nozaki, H. Tetrahedron Lett. 1985, 26, 2101.
 (63) Stefani, A. Helu. Chem. Acta 1974, 57, 1346.

[^13]: (64) McKillop, A.; Young, D. W.; Edwards, M.; Hug, R. P.; Taylor, E. C. J. Org. Chem. 1978, 43, 3773.

[^14]: (65) Huet, J.; Zimmermann, D. Nouv. J. Chim. 1983, 7, 29.
 (66) kanemasa, S.; Tanaka, J.; Nakahama, H.; Tsuge, O. Bull. Chem. Soc. Jpn. 1985, 58, 3385.

